Data from: Genomic analysis of a key innovation in an experimental Escherichia coli population
Data files
Feb 08, 2013 version files 5.20 MB
-
Blount et al Nat 2012 Expression.csv
13.27 KB
-
Blount et al Nat 2012 fig 4b raw.csv
263.02 KB
-
Blount et al Nat 2012 fig 4b transformed.csv
477.69 KB
-
Blount et al Nat 2012 fig 4c transformed.csv
196.60 KB
-
Blount et al Nat 2012 fig 5c raw.csv
254.11 KB
-
Blount et al Nat 2012 fig 5c transformed.csv
369.25 KB
-
Blount et al Nat 2012 fig 6a raw.csv
75.15 KB
-
Blount et al Nat 2012 fig 6a transformed.csv
124.38 KB
-
Blount et al Nat 2012 fig 6b raw.csv
75.14 KB
-
Blount et al Nat 2012 fig 6b transformed.csv
123.93 KB
-
Blount et al Nat 2012 fig 6c raw.csv
77.99 KB
-
Blount et al Nat 2012 fig 6c transformed.csv
124.56 KB
-
Blount et al Nat 2012 fig 6d raw.csv
77.89 KB
-
Blount et al Nat 2012 fig 6d transformed.csv
124.51 KB
-
Blount et al Nat 2012 fig 7.csv
1.35 KB
-
Blount et al Nat 2012 sup fig 3 raw.csv
163.39 KB
-
Blount et al Nat 2012 sup fig 3 transformed.csv
300.93 KB
-
Blount et al Nat 2012 sup fig 5 set 1 raw.csv
281.74 KB
-
Blount et al Nat 2012 sup fig 5 set 1 transformed.csv
543.99 KB
-
Blount et al Nat 2012 sup fig 5 set 2 raw.csv
216.49 KB
-
Blount et al Nat 2012 sup fig 5 set 2 transformed.csv
407.94 KB
-
Blount et al Nat 2012 sup fig 5 set 3 raw.csv
184.47 KB
-
Blount et al Nat 2012 sup fig 5 set 3 transformed.csv
340.68 KB
-
README_for_Blount et al Nat 2012 Expression.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 4b raw.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 4b transformed.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 4c transformed.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 5c raw.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 5c transformed.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 6a raw.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 6a transformed.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 6b raw.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 6b transformed.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 6c raw.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 6c transformed.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 6d raw.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 6d transformed.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 fig 7.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 sup fig 3 raw.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 sup fig 3 transformed.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 sup fig 5 set 1 raw.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 sup fig 5 set 1 transformed.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 sup fig 5 set 2 raw.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 sup fig 5 set 2 transformed.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 sup fig 5 set 3 raw.rtf
16.73 KB
-
README_for_Blount et al Nat 2012 sup fig 5 set 3 transformed.rtf
16.73 KB
Abstract
Evolutionary novelties have been important in the history of life, but their origins are usually difficult to examine in detail. We previously described the evolution of a novel trait, aerobic citrate utilization (Cit+), in an experimental population of Escherichia coli. Here we analyze 29 genomes to investigate the history and genetic basis of this trait. At least three distinct clades coexisted for more than 10,000 generations prior to its emergence. The Cit+ trait originated in one clade by a tandem duplication that captured an aerobically-expressed promoter for the expression of a previously silent citrate transporter. The clades varied in their propensity to evolve this novel trait, although genotypes able to do so existed in all three clades, implying that multiple potentiating mutations arose during the population’s history. Our findings illustrate the importance of promoter capture and altered gene regulation in mediating the exaptation events that often underlie evolutionary innovations.