Skip to main content
Dryad

Large-scale homogenization of soil bacterial communities in response to agricultural practices in paddy fields, China

Data files

Nov 30, 2021 version files 179.48 KB

Abstract

This dataset contains data from 257 sites in four typical rice-growing regions across a 4,000-km transect in China, including geographic location data and environment factors data.

The study was conducted across a 4,000-km transect of China’s rice-growing areas, from Heilong Jiang province to Yunnan province (100°55′ E to 134°08′° E, 22°46′ N to 48°02′ N, Table S1). Four typical rice-growing regions were selected along this transect: Sanjiang Plain (modern mechanical farming), Taihu Plain (mechanical plus minor manual farming), Lianghu Plain (manual plus minor mechanical farming), and Hani Terrace (traditional manual farming).

Field sampling was conducted during July and August in 2014 and 2015. Soil samples were collected from 178 flooded paddy fields and 79 surrounding non-paddy areas across four typical rice-growing regions of China. At each site, one homogenized sample was obtained, which was then separated into two parts. One part, which was obtained for DNA extraction, was placed into a sterile plastic tube then immediately placed in liquid nitrogen for short-term transportation. After shipping to the laboratory, these tubes were stored at −80 °C. The second part of the soil sample was placed into a plastic bag and stored at 4.0 °C for determining the soil physicochemical properties.

Main results of the experiments are that: (1) Distance–decay patterns of bacterial communities in paddy fields revealed reduced β-diversity compared to surrounding natural habitats. (2) Modern rice farming practices (plowing with machines) caused stronger homogenization of soil bacterial communities than traditional farming (plowing by hand). Among the four paddy regions, plowing by hand retained the highest soil bacterial β-diversity. (3) Moreover, a significant inverse correlation was observed between bacterial β-diversity and the agricultural mechanization level. (4) Among multiple environmental factors, dramatic spatial homogenization of soil physicochemical properties, particularly soil nutrient contents, and reduced dispersal limitation caused by modern farming activities both strongly predict a reduction of bacterial β-diversity in modern paddy fields.