Skip to main content
Dryad logo

Data from: Distribution of the specialist aphid Uroleucon nigrotuberculatum (Homoptera: Aphididae) in response to host plant semiochemical induction by the gall fly Eurosta solidaginis (Diptera: Tephritidae)

Citation

Thomas, Austin M.; Williams, Ray S.; Swarthout, Robert F. (2020), Data from: Distribution of the specialist aphid Uroleucon nigrotuberculatum (Homoptera: Aphididae) in response to host plant semiochemical induction by the gall fly Eurosta solidaginis (Diptera: Tephritidae), Dryad, Dataset, https://doi.org/10.5061/dryad.97c1p16

Abstract

Many plants use terpenoids and other volatile compounds as semiochemicals. Reception of plant volatiles by conspecifics may trigger a defensive phytochemical response. These same compounds can also function as host recognition signals for phytophagous insects. In this experiment we find that when the specialist gall-forming fly Eurosta solidaginis attacks its tall goldenrod (Solidago altissima) host plant, the fly indirectly induces a phytochemical response in nearby tall goldenrod plants. This phytochemical response may, in turn, act as a positive signal attracting the goldenrod specialist aphid Uroleucon nigrotuberculatum. Laboratory based experiments exposing ungalled tall goldenrod plants to the volatiles released by E. solidaginis galls demonstrated a consistent increase in foliar terpenoid concentrations in ungalled plants. Analysis of tall goldenrod stem and gall tissue chemistry revealed induction of terpenoids in gall tissue, with a simultaneous decrease in green leaf volatile concentrations. Field experiments demonstrated a consistent spatial relationship in tall goldenrod foliar terpenoid concentrations with distance from an E. solidaginis gall. Both laboratory and field experiments establish consistent induction of the terpene β-farnesene, and that this compound is a strong positive predictor of U. nigrotuberculatum aphid presence on goldenrod plants along with plant biomass and several other foliar terpenoids. These findings suggest E. solidaginis induced phytochemistry, especially β-farnesene, may be acting as a kairomone, driving aphid distribution in the field.

Usage Notes

Location

North Carolina
Watauga County