Skip to main content
Dryad logo

Data from: Multigenerational hybridisation and its consequences for maternal effects in Atlantic salmon

Citation

Debes, Paul V.; McBride, Meghan C.; Fraser, Dylan J.; Hutchings, Jeffrey A. (2013), Data from: Multigenerational hybridisation and its consequences for maternal effects in Atlantic salmon, Dryad, Dataset, https://doi.org/10.5061/dryad.9cs2v

Abstract

Outbreeding between segregating populations can be important from an evolutionary, conservation, and economical- agricultural perspective. Whether and how outbreeding influences maternal effects in wild populations has rarely been studied, despite both the prominent maternal influence on early offspring survival and the known presence of fitness effects resulting from outbreeding in many taxa. We studied several traits during the yolk-feeding stage in multigenerational crosses between a wild and a domesticated Atlantic salmon (Salmo salar) population up to their third-generation hybrid in a common laboratory environment. Using cross-means analysis, we inferred that maternal additive outbreeding effects underlie most offspring traits, but that yolk mass also underlies maternal dominant effects. As a consequence of the interplay between additive and dominant maternally controlled traits, offspring from first-generation hybrid mothers expressed an excessive proportion of residual yolk mass, relative to total mass, at time of first feeding. Their residual yolk mass was 23-97% greater than those of other crosses and 31% more than that predicted by a purely additive model. Offspring additive, epistatic, and epistatic offspring-by-maternal outbreeding effects appeared to further modify this largely maternally controlled cross-means pattern, resulting in an increase in offspring size with the percentage of domesticated alleles. Fitness implications remain elusive because of unknown phenotype- by-environment interactions. However, these results suggest how mechanistically co-adapted genetic maternal control on early offspring development can be disrupted by the effects of combining alleles from divergent populations. Complex outbreeding effects at both the maternal and offspring levels make the prediction of hybrid phenotypes difficult.

Usage Notes

Location

North Atlantic