Data from: Proximity labeling reveals novel interactomes in live Drosophila tissue
Data files
Jul 12, 2019 version files 866.86 MB
Abstract
Gametogenesis is dependent on intercellular communication facilitated by stable intercellular bridges connecting developing germ cells. During Drosophila oogenesis, intercellular bridges (referred to as ring canals) have a dynamic actin cytoskeleton that drives their expansion to a diameter of 10μm. While multiple proteins have been identified as components of ring canals (RCs), we lack a basic understanding of how RC proteins interact together to form and regulate the RC cytoskeleton. We optimized a procedure for proximity-dependent biotinylation in live tissue using the APEX enzyme to interrogate the RC interactome. APEX was fused to four different RC components (RC-APEX baits) and 55 unique high-confidence preys were identified. The RC-APEX baits produced almost entirely distinct interactomes that included both known RC proteins as well as uncharacterized proteins. The proximity ligation assay was used to validate close-proximity interactions between the RC-APEX baits and their respective preys. Further, an RNAi screen revealed functional roles for several high-confidence prey genes in RC biology. These findings highlight the utility of enzyme-catalyzed proximity labeling for protein interactome analysis in live tissue and expand our understanding of RC biology.