Skip to main content
Dryad

Traction performance across the life of slip-resistant footwear

Data files

May 26, 2021 version files 90.56 KB

Abstract

Slips, trips, and falls are a major cause of injury in the workplace. Footwear is an important factor in preventing slips. Furthermore, traction performance (friction and under-shoe fluid drainage) are believed to change throughout the life of footwear. However, a paucity of data is available for how traction performance changes for naturally worn, slip-resistant footwear. Participants wore slip-resistant footwear while their distance walked was monitored. Friction and under-shoe fluid pressures were measured using a robotic slip tester under a diluted glycerol contaminant condition after each month of wear for the left and right shoes. The wear volume and the size of the worn region was also measured. Prior to wearing shoes at work, participants completed dry walking trials during which ground reaction forces were recorded across different types of shoes. The peak normal force, shear force, and required coefficient of friction (RCOF) were calculated. Friction initially increased and then steadily decreased as the distance walked and the size of the worn region increased. Fluid pressures increased as the shoes were worn and were associated with increased walking distance and size of the worn region. Consistent with previous research, increases in the size of the worn region are associated with increased under-shoe fluid pressures and decreased traction. These trends are presumably due to reduced fluid drainage between the shoe-floor interface when the shoe becomes worn. Wear rate was positively associated with peak RCOF and with peak shear force, but was not significantly related to peak normal forces. Traction performance changes with natural wear. The distance walked in the shoe and the size of the worn region may be valuable indicators for assessing loss of traction performance. Current shoe replacement recommendations for slip-resistant shoes are based upon age and tread depth. This study suggests that tools measuring the size of the worn region and/or distance traveled in the shoes are appropriate alternatives for tracking traction performance loss due to shoe wear. The finding that shear forces and particularly the peak RCOF are related to wear suggests that a person’s gait characteristics can influence wear. Therefore, individual gait kinetics may be used to predict wear rate based on the fatigue failure shoe wear mechanism.