Skip to main content
Dryad logo

Data from: Understanding the dominant controls on litter decomposition

Citation

Bradford, Mark A. et al. (2016), Data from: Understanding the dominant controls on litter decomposition, Dryad, Dataset, https://doi.org/10.5061/dryad.9t1s9

Abstract

Litter decomposition is a biogeochemical process fundamental to element cycling within ecosystems, influencing plant productivity, species composition and carbon storage. Climate has long been considered the primary broad-scale control on litter decomposition rates, yet recent work suggests that plant litter traits may predominate. Both decomposition paradigms, however, rely on inferences from cross-biome litter decomposition studies that analyse site-level means. We re-analyse data from a classical cross-biome study to demonstrate that previous research may falsely inflate the regulatory role of climate on decomposition and mask the influence of unmeasured local-scale factors. Using the re-analysis as a platform, we advocate experimental designs of litter decomposition studies that involve high within-site replication, measurements of regulatory factors and processes at the same local spatial grain, analysis of individual observations and biome-scale gradients. Synthesis. We question the assumption that climate is the predominant regulator of decomposition rates at broad spatial scales. We propose a framework for a new generation of studies focused on factoring local-scale variation into the measurement and analysis of soil processes across broad scales. Such efforts may suggest a revised decomposition paradigm and ultimately improve confidence in the structure, parameter estimates and hence projections of biogeochemical models.

Usage Notes