Skip to main content
Dryad

Online electronic material for: Macroevolutionary dynamics of climatic niche space

Data files

May 17, 2022 version files 65.39 MB

Abstract

How and why lineages evolve along niche space as they diversify and adapt to different environments is fundamental to evolution. Progress has been hampered by the difficulties of linking a robust empirical characterization of species niches with flexible evolutionary models that describe their evolution. Consequently, the relative influence of abiotic and biotic factors remains poorly understood. Here we characterize species’ two-dimensional temperature and precipitation niche space occupied (i.e., species niche envelope) as complex geometries and assess their evolution across all Aves using a model that captures heterogeneous evolutionary rates on time-calibrated phylogenies. We find that extant birds coevolved from warm, mesic climatic niches into colder and drier environments and responded to the K-Pg boundary with a dramatic increase in disparity. Contrary to expectations of subsiding rates of niche evolution, our results show that overall rates have increased steadily, with some lineages experiencing exceptionally high evolutionary rates, associated with colonization of novel niche spaces, and others showing niche stasis. Both competition- and environmental change-driven niche evolution transpire and result in highly heterogeneous rates near the present. Our findings highlight the growing ecological and conservation insights arising from model-based integration of comprehensive environmental and phylogenetic information.