Skip to main content
Dryad

Data from: Long-term aggregation of larval fish siblings during dispersal along an open coast

Data files

Nov 07, 2017 version files 102.68 KB

Abstract

Pelagic dispersal of most benthic marine organisms is a fundamental driver of population distribution and persistence and is thought to lead to highly mixed populations. However, the mechanisms driving dispersal pathways of larvae along open coastlines are largely unknown. To examine the degree to which early stages can remain spatially coherent during dispersal, we measured genetic relatedness within a large pulse of newly recruited splitnose rockfish (Sebastes diploproa), a live-bearing fish whose offspring settle along the US Pacific Northwest coast after spending up to a year in the pelagic environment. A total of 11.6% of the recruits in a single recruitment pulse were siblings, providing the first evidence for persistent aggregation throughout a long dispersal period. Such protracted aggregation has profound implications for our understanding of larval dispersal, population connectivity, and gene flow within demersal marine populations.