Skip to main content
Dryad

Effect of drought and nutrient availability on invaded plant communities in a semi-arid ecosystem

Cite this dataset

Ali, Hamada; Bucher, Solveig Franziska (2022). Effect of drought and nutrient availability on invaded plant communities in a semi-arid ecosystem [Dataset]. Dryad. https://doi.org/10.5061/dryad.b8gtht7g9

Abstract

Ecosystem functions are heavily dependent on the functional composition of the plant community, i.e., the functional traits of plants forming the community. This, on the one hand, depends on plant occurrence, but on the other hand depends on the intraspecific variability of functional traits of the species, which are influenced by climate and nutrient availability and affected by plant-plant interactions. To illustrate that, we studied the effects of drought and nitrogen addition (+ N), two important abiotic variables which are changing with ongoing global change, as well as their combined effect on the functional responses of grassland communities in semi-arid environments of Northern Africa comprising of natural and invasive species. We conducted a plot plant experiment where we planted three native species and one invasive plant species in artificial communities as of 5 individuals per species per plot. We exposed these communities to four different treatments: a drought treatment, a N-addition treatment, the combination between drought and N-addition as well as a control. To assess the performance of plants within treatments, we measured selected plant functional traits (plant height, specific leaf area (SLA), leaf dry matter content (LDMC), N content of the leaves (Nmass), specific root length (SRL) and root diameter) for all individuals occurring in our plots, and additionally assessed the above and belowground biomass for each plant individual. We found that the invasive species showed a higher performance (higher biomass accumulation, taller plants, higher SLA, Nmass, SRL and root diameter as well as lower LDMC) than the native species under drought conditions. The invasive species was especially successful with the combined impact of drought + N, which is a likely scenario in ongoing global change for our research area. Thus, plant functional traits might be a key factor for invasion success of plant species which will be even more pronounced under ongoing global change.

Methods

We conducted a plot plant experiment where we planted three native species and one invasive plant species in artificial communities as of 5 individuals per species per plot. We exposed these communities to four different treatments: a drought treatment, a N-addition treatment, the combination between drought and N-addition as well as a control. To assess the performance of plants within treatments, we measured selected plant functional traits (plant height, specific leaf area (SLA), leaf dry matter content (LDMC), N content of the leaves (Nmass), specific root length (SRL) and root diameter) for all individuals occurring in our plots, and additionally assessed the above and belowground biomass for each plant individual. 

Usage notes

For additional details about this dataset, please use the following README.txt file.

Funding

Suez Canal University, Award: IG-2020-18