Skip to main content
Dryad

Data from: Shifts along parasite-mutualist continuum are opposed by fundamental trade-offs

Data files

Abstract

Theory suggests that symbionts can readily evolve more parasitic or mutualistic strategies with respect to hosts. However, many symbionts have stable interactions with hosts that improve nutrient assimilation or confer protection from pathogens. We explored the potential for evolution of increased parasitism or decreased parasitism and mutualism in a natural gut symbiosis between larvae of Plutella xylostella and the microbe Enterobacter cloacae. We focused on interactions with the pathogen, Bacillus thuringiensis: selecting for parasitism in terms of facilitating pathogen infection, or increased mutualism in terms of host protection. Selection for parasitism led to symbionts increasing pathogen-induced mortality, but reduced their competitive ability with pathogens and their in vitro growth rates. Symbionts did not evolve to confer protection from pathogens. However, several lineages evolved reduced parasitism, primarily in terms of moderating impacts on host growth, potentially because prudence pays dividends through increased host size. Overall, evolution of increased parasitism was achievable but was opposed by trade-offs likely to reduce fitness. The evolution of protection may not have occurred because suppressing growth of B. thuringiensis in the gut might provide only weak protection or because evolution towards protective interactions was opposed by loss of competitive fitness in symbionts.