Skip to main content
Dryad logo

Data from: Extending the Growth Rate Hypothesis to species development: can stoichiometric traits help to explain the composition of macroinvertebrate communities?

Citation

Beck, Miriam et al. (2021), Data from: Extending the Growth Rate Hypothesis to species development: can stoichiometric traits help to explain the composition of macroinvertebrate communities?, Dryad, Dataset, https://doi.org/10.5061/dryad.bnzs7h4b0

Abstract

Ecological stoichiometry seeks to understand the ecological consequences of elemental imbalances between consumers and their resources. Therein, the well-accepted growth rate hypothesis (GRH) states that organisms exhibiting rapid growth have higher phosphorus (P) demand – and thus lower C:P and N:P ratios – than slow growing ones, due to a higher allocation to P-rich rRNA. However, GRH has rarely been extended to other biological traits than growth, especially at the community level. In this study, we investigated whether macroinvertebrate stoichiometric traits (e.g. C:P and N:P ratios) can be linked to their development traits, and whether these stoichiometric traits are related to macroinvertebrate community assemblage under different nutrient conditions. We allocated more than 400 European taxa to different groups, defined using available information about three development-related traits: ‘life span’, ‘voltinism’ and ‘number of reproductive cycles per individual’. We sampled 18 invertebrate taxa in six streams exhibiting different levels of nutrient concentration and measured their stoichiometric traits. Further, we quantified invertebrate taxon abundances in these streams during an annual survey. Based on these data, we tested whether community composition regarding the developmental groups differs, depending on nutrient concentration. We found significant differences in the proportions of the developmental groups along a gradient of water N:P, in relation to their stoichiometric traits. Taxa with low C:P and N:P ratios were generally associated with faster development groups, and these taxa tended to occur at higher proportions in streams exhibiting low dissolved N:P ratios. In contrast, communities from P-poor, high dissolved N:P streams, were dominated by slowly developing taxa with high N:P ratios. Our results highlight that extending the GRH to species development rate might give some insights about the mechanisms by which nutrient concentrations in ecosystems influence consumers’community composition.

Usage Notes

See ReadMe in the datafile.