Skip to main content
Dryad

Evaluating the effects of pod-based electronic cigarettes on human endothelial cell function

Cite this dataset

Majid, Sana et al. (2023). Evaluating the effects of pod-based electronic cigarettes on human endothelial cell function [Dataset]. Dryad. https://doi.org/10.5061/dryad.bzkh189dt

Abstract

Pod-based electronic (e-) cigarettes more efficiently deliver nicotine using a protonated formulation. The cardiovascular effects associated with these devices are poorly understood. We evaluated whether pod-based e-liquids and their individual components impair endothelial cell function.  We isolated endothelial cells from people who are pod users (n=10), tobacco never users (n=7), and combustible cigarette users (n=6). After a structured use, pod users had lower acetylcholine-mediated endothelial nitric oxide synthase (eNOS) activation compared with never users and was similar to levels from combustible cigarette users (overall P=0.008, P=0.01 pod vs never; P=0.96 pod vs combustible cigarette). The effects of pod-based e-cigarettes and their constituents on vascular cell function were further studied in commercially available human aortic endothelial cells (HAECs) incubated with flavored JUUL e-liquids or propylene glycol (PG):vegetable glycerol (VG) at 30:70 ratio with or without 60 mg/mL nicotine salt for 90 min. A progressive increase in cell death with JUUL e-liquid exposure was observed across 0.0001-1% dilutions; PG:VG vehicle with and without nicotine salt-induced cell death. A23187-stimulated nitric oxide production was decreased with all JUUL e-liquid flavors, PG:VG and nicotine salt exposures. Aerosols generated by JUUL e-liquid heating similarly decreased stimulated nitric oxide production. Only mint-flavored e-liquids increased inflammation and menthol-flavored e-liquids enhanced oxidative stress in HAECs. In conclusion, pod e-liquids and their individual components appear to impair endothelial cell function. These findings indicate the potential harm of pod-based devices on endothelial cell function and thus may be relevant to cardiovascular injury in pod-type e-cigarette users.

Funding

National Heart Lung and Blood Institute, Award: 5P50HL120163

National Heart Lung and Blood Institute, Award: U54HL120163

American Heart Association, Award: 20YVNR35500014

National Heart Lung and Blood Institute, Award: K01 HL143142