Skip to main content
Dryad

Data from: Transmission risk predicts avoidance of infected conspecifics in Trinidadian guppies

Cite this dataset

Stephenson, Jessica F.; Perkins, Sarah E.; Cable, Joanne (2019). Data from: Transmission risk predicts avoidance of infected conspecifics in Trinidadian guppies [Dataset]. Dryad. https://doi.org/10.5061/dryad.c1090r5

Abstract

1.Associating with conspecifics afflicted with infectious diseases increases the risk of becoming infected, but engaging in avoidance behaviour incurs the cost of lost social benefits. Across systems, infected individuals vary in the transmission risk they pose, so natural selection should favour risk‐sensitive avoidance behaviour that optimally balances the costs and benefits of sociality. 2.Here we use the guppy Poecilia reticulata‐Gyrodactylus turnbulli host‐parasite system to test the prediction that individuals avoid infected conspecifics in proportion to the transmission risk they pose. 3.In dichotomous choice tests, uninfected fish avoided both the chemical and visual cues, presented separately, of infected conspecifics only in the later stages of infection. 4.A transmission experiment indicated that this avoidance behaviour accurately tracked transmission risk (quantified as both the speed at which transmission occurs and the number of parasites transmitting) through the course of infection. 5.Together, these findings reveal that uninfected hosts can use redundant cues across sensory systems to inform dynamic risk‐sensitive avoidance behaviour. This correlation between the transmission risk posed by infected individuals and the avoidance response they elicit has implications for the evolutionary ecology of infectious disease, and its explicit inclusion may improve the ability of epidemic models to predict disease spread.

Usage notes