Skip to main content
Dryad

Data from: Compromised femoral and lumbovertebral bone in the Dp(16)1Yey Down syndrome mouse model

Data files

Sep 03, 2024 version files 14.69 KB

Abstract

Down syndrome (DS), affecting ~1 in 800 live births, is caused by the triplication of human chromosome 21 (Hsa21). Individuals with DS have skeletal features including craniofacial abnormalities and decreased bone mineral density (BMD). Lowered BMD can lead to increased fracture risk, with common fracture points at the femoral neck and lumbar spine. While the femur has been studied in DS mouse models, there is little research done on the vertebrae despite evidence that humans with DS have affected vertebrae. Additionally, it is important to establish when skeletal deficits occur to find times of potential intervention. The Dp(16)1Yey DS mouse model has all genes triplicated on mouse chromosome 16 orthologous to Hsa21 and displayed deficits in long bone, including trabecular and cortical deficits in male but not female mice, at 12 weeks. We hypothesized that the long bone and lumbovertebral microarchitecture would exhibit deficits in Dp(16)1Yey mice compared to control mice, long bone strength would be diminished in Dp(16)1Yey mice, and  there would be a sexual dimorphism in these parameters at 6 weeks. The trabecular region of the 4th lumbar (L4) vertebra and the trabecular and cortical regions of the femur were analyzed via micro-computed tomography and 3-point bending in 6-week-old male and female Dp(16)1Yey and littermate control mice. Trabecular and cortical deficits were observed in femurs from male Dp(16)1Yey mice, and cortical deficits were seen in femurs of male and female Dp(16)1Yey mice. Additionally, the L4 of male and female Dp(16)1Yey mice show trabecular deficits, which have not been previously reported in a DS mouse model. Our results indicate that skeletal deficits associated with DS occur early in skeletal development, are dependent on skeletal compartment and site, are sex dependent, and potential interventions should likely begin early in skeletal development of DS mouse models.