Skip to main content
Dryad logo

Data from: Eastern Whip-poor-wills have larger nonbreeding home ranges in areas with more agriculture and forest fragmentation

Citation

Skinner, Aaron et al. (2022), Data from: Eastern Whip-poor-wills have larger nonbreeding home ranges in areas with more agriculture and forest fragmentation, Dryad, Dataset, https://doi.org/10.5061/dryad.cnp5hqc84

Abstract

Migratory bird populations can be limited by events in disparate parts of the world. Birds in tropical regions are facing rapid habitat loss, climate change, and intensive agricultural regimes, potentially contributing to population declines. However, an understanding of basic non-breeding ecology of species, such as habitat and space use, is critical for determining if this is the case. Populations of the nocturnal/crepuscular Eastern Whip-poor-will (Antrostomus vociferus) have declined by 70% since the 1960’s, yet data on the species are sparse outside of the breeding season. We extracted data from 41 archival GPS tags deployed on whip-poor-wills and estimated non-breeding home ranges and land covers used. We used satellite imagery and stable carbon and nitrogen isotope values from claws grown during the non-breeding season to analyze how land cover and habitat moisture impacted home range size and relative trophic level. Forest was by far the most prevalent land cover used by whip-poor-wills, occurring in all home ranges and accounting for >80% of diurnal roosting points. We found that less forest, the presence of agriculture, and more edge (irrespective of land cover) were associated with larger home ranges. Stable isotope values differed by broadscale ecoregion but not local land cover characteristics in our study, indicating that regional idiosyncrasies or broadscale processes can be more important in determining stable isotope ratios. Our findings suggest that the loss, fragmentation, and replacement of forest by agriculture in the core of the whip-poor-will’s non-breeding range may represent a threat to the species, as they rely heavily upon forest, and appear to alter space use in response to changes in forest cover.

Methods

See ReadMe file and associated manuscript (including the supporting information).

Usage Notes

See ReadMe file and associated manuscript (including the supporting information).

Funding