Skip to main content
Dryad logo

Data from: Frequency-dependence shapes the adaptive landscape of imperfect Batesian mimicry

Citation

Finkbeiner, Susan D. et al. (2018), Data from: Frequency-dependence shapes the adaptive landscape of imperfect Batesian mimicry, Dryad, Dataset, https://doi.org/10.5061/dryad.cp3f820

Abstract

Despite more than a century of biological research on the evolution and maintenance of mimetic signals, the relative frequencies of models and mimics necessary to establish and maintain Batesian mimicry in natural populations remains understudied. Here we investigate the frequency-dependent dynamics of imperfect Batesian mimicry, using predation experiments involving artificial butterfly models. We use two geographically distinct populations of Adelpha butterflies that vary in their relative frequencies of a putatively defended model (Adelpha iphiclus) and Batesian mimic (Adelpha serpa). We found that in Costa Rica, where both species share similar abundances, Batesian mimicry breaks down, and predators more readily attack artificial butterfly models of the presumed mimic, A. serpa. In contrast, in Ecuador, where A. iphiclus (model) is significantly more abundant than A. serpa (mimic), both species are equally protected from predation. Our results provide compelling experimental evidence that imperfect Batesian mimicry is frequency-dependent on the relative abundance of models and mimics in natural populations, and contribute to the growing body of evidence that complex dynamics, such as seasonality or the availability of alternative prey, influence the evolution of mimetic traits.

Usage Notes

Funding

National Science Foundation, Award: DEB-1342712

Location

Ecuador
Costa Rica