Skip to main content
Dryad logo

Optimal sequence similarity thresholds for clustering of molecular operational taxonomic units in DNA metabarcoding studies

Citation

Bonin, Aurélie; Guerrieri, Alessia; Ficetola, Gentile F. (2022), Optimal sequence similarity thresholds for clustering of molecular operational taxonomic units in DNA metabarcoding studies, Dryad, Dataset, https://doi.org/10.5061/dryad.crjdfn353

Abstract

Clustering approaches are pivotal to handle the many sequence variants obtained in DNA metabarcoding datasets, therefore they have become a key step of metabarcoding analysis pipelines. Clustering often relies on a sequence similarity threshold to gather sequences in Molecular Operational Taxonomic Units (MOTUs), each of which ideally representing a homogeneous taxonomic entity, e.g. a species or a genus. However, the choice of the clustering threshold is rarely justified, and its impact on MOTU over-splitting or over-merging even less tested. Here, we evaluated clustering threshold values for several metabarcoding markers under different criteria: limitation of MOTU over-merging, limitation of MOTU over-splitting, and trade-off between over-merging and over-splitting. We extracted sequences from a public database for nine markers, ranging from generalist markers targeting Bacteria or Eukaryota, to more specific markers targeting a class or a subclass (e.g. Insecta, Oligochaeta). Based on the distributions of pairwise sequence similarities within species and within genera, and on the rates of over-splitting and over-merging across different clustering thresholds, we were able to propose threshold values minimizing the risk of over-splitting, that of over-merging, or offering a trade-off between the two risks. For generalist markers, high similarity thresholds (0.96-0.99) are generally appropriate, while more specific markers require lower values (0.85-0.96). These results do not support the use of a fixed clustering threshold. Instead, we advocate a careful examination of the most appropriate threshold based on the research objectives, the potential costs of over-splitting and over-merging, and the features of the studied markers.

Funding

European Research Council, Award: 772284