Data from: Measurement, variation, and scaling of osteocyte lacunae: a case study in birds
Data files
Sep 03, 2013 version files 1.03 GB
-
Accipiter cooperi femur 242198.zip
14.33 MB
-
Accipiter striatus femur 242034.zip
11.84 MB
-
AccipiterCooperi 241009.zip
8.48 MB
-
AccipiterStriatus 240638.zip
12.96 MB
-
Aegolius 241878 femur.zip
33.40 MB
-
Aeoglius 241878 humerus.zip
29.05 MB
-
Bonasa 242039.zip
24.39 MB
-
Branta 227638.zip
12.26 MB
-
Bubo R1452.zip
18.85 MB
-
Cardinalis 241794.zip
16.25 MB
-
Carduelis 241809.zip
26.36 MB
-
Colaptes 241887.zip
12.94 MB
-
Colaptes humerus 241887.zip
10.14 MB
-
Cyanocitta femur 242057.zip
12.83 MB
-
Cyanocitta241803.zip
9.98 MB
-
Dendroica 240871.zip
12.61 MB
-
Dendroica 241982.zip
9.49 MB
-
Dinosaur lacuna images.zip
58.11 MB
-
Diomedea 210390.zip
13.34 MB
-
Dromaius R1717 caudal vert.zip
10.10 MB
-
Dromaius R1717 cervical vert.zip
7.26 MB
-
Dromaius R1717 coracoid.zip
11.70 MB
-
Dromaius R1717 dorsal rib.zip
13.52 MB
-
Dromaius R1717 femur.zip
14.88 MB
-
Dromaius R1717 fibula.zip
16.54 MB
-
Dromaius R1717 frontal.zip
14.77 MB
-
Dromaius R1717 furcula.zip
14 MB
-
Dromaius R1717 humerus.zip
22.57 MB
-
Dromaius R1717 ischium.zip
11.05 MB
-
Dromaius R1717 manual phalanx.zip
12.68 MB
-
Dromaius R1717 metacarpals.zip
16.60 MB
-
Dromaius R1717 pedalphalanx.zip
12.58 MB
-
Dromaius R1717 pubis.zip
6.03 MB
-
Dromaius R1717 radius.zip
12.64 MB
-
Dromaius R1717 scapula.zip
11.34 MB
-
Dromaius R1717 scleral ossicle.zip
4.39 MB
-
Dromaius R1717 sternal rib.zip
10.37 MB
-
Dromaius R1717 tarsometatarsus.zip
11.82 MB
-
Dromaius R1717 tibiotarsus.zip
11.71 MB
-
Dromaius R1717 ulna.zip
9.06 MB
-
Dumetella femur 242013.zip
11.60 MB
-
Grus 116250.zip
12.92 MB
-
Icterus 241804.zip
9.03 MB
-
Input data.zip
172.35 KB
-
Larus femur 8771.zip
10.17 MB
-
Meleagris R1718.zip
21.70 MB
-
Otus 240864.zip
20.94 MB
-
Otus 241793 femur.zip
27.05 MB
-
Otus 241793 humerus.zip
25 MB
-
Output data.zip
30.29 KB
-
Parus femur 241934.zip
18.72 MB
-
Parus femur 241963.zip
12.90 MB
-
Parus humerus 241963.zip
9.17 MB
-
Passerella 243058.zip
12.45 MB
-
Phalacocrorax idahoensis63156.zip
9.63 MB
-
Phalacrocorax idahoensis74435.zip
14.50 MB
-
Pheucticus femur 241935.zip
9.41 MB
-
Pheucticus femur 241952.zip
12.79 MB
-
Piranga 241960.zip
9.82 MB
-
Podilymbus 8725.zip
12.08 MB
-
Quiscalus 241885.zip
10.18 MB
-
README_for_Input data.txt
6.79 KB
-
README.txt
6.79 KB
-
Rhea 223136.zip
6.48 MB
-
Sitta 241779.zip
24.54 MB
-
Spizella 241938.zip
11.67 MB
-
Struthio fem R1716.zip
11.38 MB
-
Struthio hum R1716.zip
10.74 MB
-
Turdus 241899.zip
21.66 MB
-
Vermivora femur 242012.zip
12.55 MB
-
Vireo 240779.zip
11.48 MB
-
Zenaida 241897.zip
13.20 MB
-
Zonotrichia 241280.zip
32.79 MB
Abstract
Basic issues surrounding osteocyte biology are still poorly understood, including the variability of osteocyte morphology within and among bones, individuals, and species. Several studies have suggested that the volume or shape of osteocytes (or their lacunae) are related to bone and/or organismal growth rate or metabolism, but the nature of this relationship, if any, is unclear. Furthermore, several studies have linked osteocyte lacuna volume with genome size or growth rate and suggested that osteocyte lacuna volume is unrelated to body size. Herein the scaling of osteocyte lacuna volume with body mass, growth and basal metabolic rates, genome size, and red blood cell size is tested using a broad sample of extant birds within a phylogenetic framework. Over 12,000 osteocyte lacuna axes were measured in a variety of bones from 34 avian and four non-avian dinosaur species. Osteocyte lacunae in parallel-fibered bone are scalene ellipsoids; their morphology and volume cannot be reliably estimated from any single thin section, and using a prolate ellipsoid model to estimate osteocyte lacuna volume results in a substantial (ca. 2–7 times) underestimate relative to true lacunar volume. Orthogonal thin sections reveal that in birds, even when only observing parallel-fibered, primary, cortical bone, intra-skeletal variation in osteocyte lacuna volume and shape is very high (volumes vary by a factor of 5.4 among different bones), whereas variation among homologous bones of the same species is low (1.2–44%; mean = 12%). Ordinary and phylogenetically informed bivariate and multiple regressions demonstrate that in birds, osteocyte volume scales significantly but weakly with body mass and mass-specific basal metabolic rate and moderately with genome size, but not with erythrocyte size. Avian whole-body growth rate and osteocyte lacuna volume are weakly and inversely related. Finally, we present the first three-dimensionally calculated osteocyte volumes for several non-avian dinosaurs, which are much larger than previously reported values and smaller than those of large extant avians. Osteocyte volumes estimated from a single transverse section and assuming prolate morphology, as done in previous studies, are relative underestimates in theropod dinosaurs compared to sauropod dinosaurs, raising the possibility that no major change in osteocyte volumes (and genome size) occurred within Theropoda on the lineage leading to birds. Osteocyte volume is intertwined with several organismal attributes whose relative importance varies at a number of hierarchical levels.