Skip to main content
Dryad

2015/16 El Niño increased water demand and pushed plants from a Mesic tropical montane grassland beyond their hydraulic safety limits

Data files

May 01, 2023 version files 139.14 KB

Abstract

In 2015/16, a strong El Niño event caused anomalously high temperatures and reduced precipitation resulting in Pantropical drought‐induced diebacks and wildfires. Although many studies have documented the El Niño impacts on tropical forests, little we know about its effects on tropical grasslands. Here, we investigated plant drought responses during and after the 2015/16 El Niño event (Jun 2016 to Aug 2017) in 12 species with contrasting drought strategies (tolerance, avoidance and escape) in a Brazilian tropical montane grassland. We tested if (1) the El Niño event induced meteorological drought anomalies, (2) the atmospheric and/or soil drought led to plant water stress and (3) plants showed signs of drought recovery. In contrast to other tropical areas, we found that the 2015/16 El Niño event did not strongly affect precipitation in our study site. However, it increased air temperature and vapour pressure deficit, thus pushing all grassland species, even the most drought‐tolerant ones, beyond their hydraulic safety margins during the dry season. Most species showed signs of drought recovery, returning to positive hydraulic margins in the wet season after the El Niño. However, the finding that all evaluated species, regardless of their drought‐response strategy, are already operating close to their hydraulic safe thresholds for stomatal closure and turgor loss suggests that this cool–humid tropical montane grassland is especially vulnerable to meteorological extremes exacerbated by the additive effects of El Niño and climate change.