Skip to main content
Dryad

Data from: Urbanization strengthens vertical stratification of ant nutrient preferences in a temperate forest ecosystem

Data files

Dec 05, 2024 version files 468.91 KB

Abstract

Resource and nutrient availability varies spatially and influences animal foraging patterns. Under the compensation hypothesis, animals should preferentially forage for the most limiting nutrient in the environment. Animal nutrient preferences have been well studied in the tropics, where terrestrial and arboreal fauna are clearly differentiated and limited by different nutrients. In temperate forests, vertical stratification of the fauna may be less pronounced and its role in foraging ecology is poorly understood. Here, we examine nutrient preference patterns over a vertical gradient in temperate forests and nearby urban centers in North Carolina, USA. Using a bait-choice experiment and novel bait design, we measured ant community nutrient preferences in the canopy and on the ground of 83 trees across 14 sites and assessed ant diversity and community composition. Ant diversity did not differ across the vertical strata or habitat types, but species turnover altered community composition to create four distinct assemblages. In temperate forests, ants did not prefer a particular nutrient in either stratum, likely due to extensive foraging across strata. In urban habitats, however, ant nutrient preferences matched patterns well known from tropical systems: arboreal animals preferred protein, while terrestrial animals preferred carbohydrates. Rather than stratum-specific nutrient limitations, however, we attribute the differences in urban preference patterns to changes in native species’ foraging intensity and the addition of uniquely urban species with specific nutrient preferences. These results underscore the necessity of testing ecological hypotheses across biomes and suggest that urbanization may produce established ecological patterns via novel mechanisms.