Skip to main content
Dryad

Range expansion, habitat use and choosiness in a butterfly under climate change: marginality and tolerance of oviposition site selection

Cite this dataset

Martin, Youri (2021). Range expansion, habitat use and choosiness in a butterfly under climate change: marginality and tolerance of oviposition site selection [Dataset]. Dryad. https://doi.org/10.5061/dryad.cz8w9gj2q

Abstract

Poleward range shifts under climate change involve the colonization of new sites and hence the foundation of new populations at the expanding edge. We studied oviposition site selection in a butterfly under range expansion (Lycaena dispar), a key process for the establishment of new populations. We described and compared the microhabitats used by the species for egg laying with those available across the study sites both in edge and in core populations. We carried out an ecological niche factor analysis (ENFA) to estimate (1) the variety of microhabitats used by the butterfly for egg laying (tolerance) and (2) the extent to which these selected microhabitats deviated from those available (marginality). Microhabitat availability was similar in edge and core populations. Ambient temperature recorded at the site level above the vegetation was on average lower at core populations. In contrast with what is often assumed, edge populations did not have narrower microhabitat use compared to core populations. Females in edge populations even showed a higher degree of generalism: they laid eggs under a wider range of microhabitats. We suggest that this pattern could be related to an overrepresentation of fast deciding personalities in edge populations. We also showed that the thermal time window for active female behaviour was reduced in edge populations, which could significantly decrease the time budget for oviposition and increase the threshold of acceptance during microhabitat selection for oviposition in recently established populations.