Skip to main content
Dryad logo

Data from: Research and exploratory analysis driven - time-data visualization (read-tv) software

Citation

Del Gaizo, John; Catchpole, Kenneth; Alekseyenko, Alexander (2022), Data from: Research and exploratory analysis driven - time-data visualization (read-tv) software, Dryad, Dataset, https://doi.org/10.5061/dryad.d51c5b02g

Abstract

read-tv

The main paper is about, read-tv, open-source software for longitudinal data visualization. We uploaded sample use case surgical flow disruption data to highlight read-tv's capabilities. We scrubbed the data of protected health information, and uploaded it as a single CSV file. A description of the original data is described below.

Data source

Surgical workflow disruptions, defined as “deviations from the natural progression of an operation thereby potentially compromising the efficiency or safety of care”, provide a window on the systems of work through which it is possible to analyze mismatches between the work demands and the ability of the people to deliver the work. They have been shown to be sensitive to different intraoperative technologies, surgical errors, surgical experience, room layout, checklist implementation and the effectiveness of the supporting team. The significance of flow disruptions lies in their ability to provide a hitherto unavailable perspective on the quality and efficiency of the system. This allows for a systematic, quantitative and replicable assessment of risks in surgical systems, evaluation of interventions to address them, and assessment of the role that technology plays in exacerbation or mitigation.

In 2014, Drs Catchpole and Anger were awarded NIBIB R03 EB017447 to investigate flow disruptions in Robotic Surgery which has resulted in the detailed, multi-level analysis of over 4,000 flow disruptions. Direct observation of 89 RAS (robitic assisted surgery) cases, found a mean of 9.62 flow disruptions per hour, which varies across different surgical phases, predominantly caused by coordination, communication, equipment, and training problems.

Methods

This section does not describe the methods of read-tv software development, which can be found in the associated manuscript from JAMIA Open (JAMIO-2020-0121.R1). This section describes the methods involved in the surgical work flow disruption data collection. A curated, PHI-free (protected health information) version of this dataset was used as a use case for this manuscript.

Observer training

Trained human factors researchers conducted each observation following the completion of observer training. The researchers were two full-time research assistants based in the department of surgery at site 3 who visited the other two sites to collect data. Human Factors experts guided and trained each observer in the identification and standardized collection of FDs. The observers were also trained in the basic components of robotic surgery in order to be able to tangibly isolate and describe such disruptive events.

Comprehensive observer training was ensured with both classroom and floor training. Observers were required to review relevant literature, understand general practice guidelines for observing in the OR (e.g., where to stand, what to avoid, who to speak to), and conduct practice observations. The practice observations were broken down into three phases, all performed under the direct supervision of an experienced observer. During phase one, the trainees oriented themselves to the real-time events of both the OR and the general steps in RAS. The trainee was also introduced to the OR staff and any other involved key personnel. During phase two, the trainer and trainee observed three RAS procedures together to practice collecting FDs and become familiar with the data collection tool. Phase three was dedicated to determining inter-rater reliability by having the trainer and trainee simultaneously, yet independently, conduct observations for at least three full RAS procedures. Observers were considered fully trained if, after three full case observations, intra-class correlation coefficients (based on number of observed disruptions per phase) were greater than 0.80, indicating good reliability.

Data collection

Following the completion of training, observers individually conducted observations in the OR. All relevant RAS cases were pre-identified on a monthly basis by scanning the surgical schedule and recording a list of procedures. All procedures observed were conducted with the Da Vinci Xi surgical robot, with the exception of one procedure at Site 2, which was performed with the Si robot. Observers attended those cases that fit within their allotted work hours and schedule. Observers used Microsoft Surface Pro tablets configured with a customized data collection tool developed using Microsoft Excel to collect data. The data collection tool divided procedures into five phases, as opposed to the four phases previously used in similar research, to more clearly distinguish between task demands throughout the procedure. Phases consisted of phase 1 - patient in the room to insufflation, phase 2 -insufflation to surgeon on console (including docking), phase 3 - surgeon on console to surgeon off console, phase 4 - surgeon off console to patient closure, and phase 5 - patient closure to patient leaves the operating room. During each procedure, FDs were recorded into the appropriate phase, and a narrative, time-stamp, and classification (based off of a robot-specific FD taxonomy) were also recorded.

Each FD was categorized into one of ten categories: communication, coordination, environment, equipment, external factors, other, patient factors, surgical task considerations, training, or unsure. The categorization system is modeled after previous studies, as well as the examples provided for each FD category.

Once in the OR, observers remained as unobtrusive as possible. They stood at an appropriate vantage point in the room without getting in the way of team members. Once an appropriate time presented itself, observers introduced themselves to the circulating nurse and informed them of the reason for their presence. Observers did not directly engage in conversations with operating room staff, however, if a staff member approached them with any questions/comments they would respond.

Data Reduction and PHI (Protected Health Information) Removal

This dataset uses 41 of the aforementioned surgeries. All columns have been removed except disruption type, a numeric timestamp for number of minutes into the day, and surgical phase. In addition, each surgical case had it's initial disruption set to 12 noon, (720 minutes).

Usage Notes

The scrubbed, PHI-free version of the data can be found at:

https://github.com/JDMusc/surgery-analysis

With a specific link to the CSV file:

https://github.com/JDMusc/surgery-analysis/blob/master/data/events_phi_free.csv

read-tv software was used to (1) visually analyze the data, and (2) calculate change points in disruption rate from the data. It can be found below:

https://github.com/JDMusc/READ-TV

Funding

Agency for Healthcare Research and Quality, Award: HS026491-01

South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Award: TL1 TR001451, UL TR001450

National Institute of Biomedical Imaging and Bioengineering, Award: NIBIB R03 EB017447