Skip to main content
Dryad

Data from: Heating rates are more strongly influenced by near-infrared than visible reflectance in beetles

Cite this dataset

Wang, Lu-Yi; Franklin, Amanda M; Black, Jay R; Stuart-Fox, Devi (2021). Data from: Heating rates are more strongly influenced by near-infrared than visible reflectance in beetles [Dataset]. Dryad. https://doi.org/10.5061/dryad.d7wm37q1k

Abstract

Adaptations to control heat transfer through the integument are a key component of temperature regulation in animals. However, there remain significant gaps in our understanding of how different optical and morphological properties of the integument affect heating rates. To address these gaps, we examined the effect of reflectivity in both ultraviolet-visible and near-infrared wavelengths, surface micro-sculpturing, effective area (area subjected to illumination) and cuticle thickness on radiative heat gain in jewel beetles (Buprestidae). We measured heating rate using a solar simulator to mimic natural sunlight, a thermal chamber to control the effects of conduction and convection, and optical filters to isolate different wavelengths. We found that effective area and reflectivity predicted heating rate. The thermal effect of reflectivity was driven by variation in near-infrared rather than ultraviolet-visible reflectivity. By contrast, cuticle thickness and surface rugosity had no detectable effect. Our results provide empirical evidence that near-infrared reflectivity has an important effect on radiative heat gain. Modulating reflectance of near-infrared wavelengths of light may be a more widespread adaptation to control heat gain than previously appreciated.