Supporting electrophysiological data for: Reward contingency gates selective cholinergic suppression of amygdala neurons
Data files
Apr 26, 2024 version files 2.34 GB
-
4645_2018-12-19_11-10-51_Laser1_CUT_CLEAN.nwb
-
4645_2018-12-20_09-42-25_Laser2_BLA_CUT_CLEAN.nwb
-
4645_2018-12-21_13-55-07_Laser4_BF_CUT_CLEAN.nwb
-
4645_2018-12-22_10-58-01_Laser5_BLA_CUT_CLEAN.nwb
-
4645_2019-01-25_15-12-50_GoUnrNogoOpto_CUT_CLEAN.nwb
-
4645_2019-02-14_15-19-10_CsVsOpto_CUT_CLEAN.nwb
-
4645_2019-02-15_14-33-49_CsVsOpto_BLAvsBFuni_CUT_CLEAN.nwb
-
4645_2019-03-27_12-21-32_OptoNoReward_CUT_CLEAN.nwb
-
4645_2019-03-29_10-14-28_OptoNoReward_CUT_CLEAN.nwb
-
4646_2018-12-19_11-08-27_Laser1_CUT_CLEAN.nwb
-
4646_2018-12-20_09-52-25_Laser2_BLA_CUT_CLEAN.nwb
-
4646_2018-12-20_15-12-21_Laser3_PL_CUT_CLEAN.nwb
-
4646_2018-12-21_14-01-27_Laser4_BF_CUT_CLEAN.nwb
-
4646_2018-12-22_11-03-03_Laser5_BLA_CUT_CLEAN.nwb
-
4646_2019-02-04_12-35-23_GoAndOrOptoSync_CUT_CLEAN.nwb
-
4646_2019-02-08_14-58-46_GoAndOrOptoSync_PFCvsBLA_5mW_CUT_CLEAN.nwb
-
4646_2019-02-11_16-54-55_GoUnrNogoOpto_CUT_CLEAN.nwb
-
4646_2019-02-19_15-15-07_CsVsOpto_Sal_CUT_CLEAN.nwb
-
4646_2019-02-20_15-25-36_CsVsOpto_Sal_CUT_CLEAN.nwb
-
4646_2019-03-27_12-24-55_OptoNoReward_CUT_CLEAN.nwb
-
4646_2019-03-29_10-16-41_OptoNoReward_CUT_CLEAN.nwb
-
4648_2018-12-19_12-50-18_Laser1_CUT_CLEAN.nwb
-
4648_2018-12-21_15-05-30_Laser4_BF_CUT_CLEAN.nwb
-
4648_2018-12-22_11-59-37_LaserX_BF_CUT_CLEAN.nwb
-
4648_2019-01-09_14-08-04_LaserX_BLA_CUT_CLEAN.nwb
-
4648_2019-01-25_17-13-13_GoUnrNogoOpto_CUT_CLEAN.nwb
-
4648_2019-02-05_16-54-26_CsAndOrOptoSync_CUT_CLEAN.nwb
-
4649_2018-12-19_12-58-32_Laser1_CUT_CLEAN.nwb
-
4649_2018-12-20_14-00-00_Laser2_BLA_CUT_CLEAN.nwb
-
4649_2018-12-20_16-23-33_Laser3_PL_CUT_CLEAN.nwb
-
4649_2018-12-21_15-13-26_Laser4_BF_CUT_CLEAN.nwb
-
4649_2018-12-22_12-05-47_Laser5_BLA_CUT_CLEAN.nwb
-
4649_2019-02-05_16-50-20_GoAndOrOptoSync_CUT_CLEAN.nwb
-
4649_2019-02-08_16-42-17_GoAndOrOptoSync_BLAvsPFC_CUT_CLEAN.nwb
-
4649_2019-02-11_16-00-18_GoUnrNogoOpto_CUT_CLEAN.nwb
-
4649_2019-02-19_16-34-20_CsVsOpto_Sal_CUT_CLEAN.nwb
-
4649_2019-03-27_13-42-54_OptoNoReward_CUT_CLEAN.nwb
-
4649_2019-03-29_11-42-39_OptoNoReward_CUT_CLEAN.nwb
-
4770_2019-03-25_13-04-28_OptoNoReward_CUT_CLEAN.nwb
-
4770_2019-03-26_11-47-27_OptoNoReward_CUT_CLEAN.nwb
-
4770_2019-03-27_13-52-43_OptoNoReward_CUT_CLEAN.nwb
-
4770_2019-03-29_11-42-39_OptoNoReward_CUT_CLEAN.nwb
-
4770_2019-04-05_12-09-00_OptoNoReward_CUT_CLEAN.nwb
-
4770_2019-04-17_11-47-30_OptoNoReward_CUT_CLEAN.nwb
-
4774_2019-03-25_14-28-54_OptoNoReward_CUT_CLEAN.nwb
-
4774_2019-03-26_13-14-03_OptoNoReward_CUT_CLEAN.nwb
-
4774_2019-03-27_15-01-03_OptoNoReward_CUT_CLEAN.nwb
-
4774_2019-03-29_13-04-49_OptoNoReward_CUT_CLEAN.nwb
-
4774_2019-04-05_13-25-51_OptoNoReward_CUT_CLEAN.nwb
-
4774_2019-04-17_13-08-25_OptoNoReward_CUT_CLEAN.nwb
-
4775_2019-03-25_14-33-23_OptoNoReward_CUT_CLEAN.nwb
-
4775_2019-03-26_13-18-38_OptoNoReward_CUT_CLEAN.nwb
-
4775_2019-03-27_15-06-28_OptoNoReward_CUT_CLEAN.nwb
-
4775_2019-03-29_13-08-23_OptoNoReward_CUT_CLEAN.nwb
-
4775_2019-04-05_13-33-35_OptoNoReward_CUT_CLEAN.nwb
-
4775_2019-04-17_13-12-29_OptoNoReward_CUT_CLEAN.nwb
-
4776_2019-03-25_15-56-21_OptoNoReward_CUT_CLEAN.nwb
-
4776_2019-03-26_14-41-21_OptoNoReward_CUT_CLEAN.nwb
-
4776_2019-03-27_16-17-15_OptoNoReward_CUT_CLEAN.nwb
-
4776_2019-03-29_14-28-55_OptoNoReward_CUT_CLEAN.nwb
-
4776_2019-04-05_14-57-53_OptoNoReward_CUT_CLEAN.nwb
-
4777_2019-03-25_16-00-20_OptoNoReward_CUT_CLEAN.nwb
-
4777_2019-03-26_14-47-40_OptoNoReward_CUT_CLEAN.nwb
-
4777_2019-03-27_16-20-28_OptoNoReward_CUT_CLEAN.nwb
-
4777_2019-03-29_14-40-21_OptoNoReward_CUT_CLEAN.nwb
-
4777_2019-04-05_14-57-54_OptoNoReward_CUT_CLEAN.nwb
-
4777_2019-04-17_14-36-14_OptoNoReward_CUT_CLEAN.nwb
-
5177_2019-05-30_10-21-17_OptoNoReward_CUT_CLEAN.nwb
-
5177_2019-06-03_14-07-57_OptoNoReward_CUT_CLEAN.nwb
-
5177_2019-06-05_14-14-41_OptoNoReward_CUT_CLEAN.nwb
-
5177_2019-06-06_14-20-33_OptoNoReward_CUT_CLEAN.nwb
-
5177_2019-06-12_13-49-28_OptoNoReward_CUT_CLEAN.nwb
-
5177_2019-06-13_13-51-09_OptoNoReward_CUT_CLEAN.nwb
-
5235_2019-05-27_10-16-51_OptoNoReward_CUT_CLEAN.nwb
-
5235_2019-05-28_10-16-39_OptoNoReward_CUT_CLEAN.nwb
-
5235_2019-05-30_10-23-43_OptoNoReward_CUT_CLEAN.nwb
-
5235_2019-06-03_14-09-12_OptoNoReward_CUT_CLEAN.nwb
-
5235_2019-06-07_14-11-00_OptoNoReward_CUT_CLEAN.nwb
-
5235_2019-06-10_14-49-56_OptoNoReward_CUT_CLEAN.nwb
-
5237_2019-05-30_11-42-13_OptoNoReward_CUT_CLEAN.nwb
-
5237_2019-06-03_15-25-05_OptoNoReward_CUT_CLEAN.nwb
-
5237_2019-06-05_15-30-38_OptoNoReward_CUT_CLEAN.nwb
-
5237_2019-06-06_15-38-18_OptoNoReward_CUT_CLEAN.nwb
-
5250_2019-06-04_17-20-56_OptoNoReward_CUT_CLEAN.nwb
-
5250_2019-06-05_16-50-34_OptoNoReward_CUT_CLEAN.nwb
-
5250_2019-06-10_17-32-27_OptoNoReward_CUT_CLEAN.nwb
-
5250_2019-06-11_16-21-17_OptoNoReward_CUT_CLEAN.nwb
-
5534_2019-06-24_10-27-43_OptoNoReward_CUT_CLEAN.nwb
-
5534_2019-06-25_09-38-47_OptoNoReward_CUT_CLEAN.nwb
-
5534_2019-07-01_11-15-20_OptoNoReward_CUT_CLEAN.nwb
-
5534_2019-07-10_09-56-22_OptoNoReward_CUT_CLEAN.nwb
-
5534_2019-07-15_16-32-14_OptoNoReward_CUT_CLEAN.nwb
-
5536_2019-06-24_10-29-47_OptoNoReward_CUT_CLEAN.nwb
-
5536_2019-06-25_09-40-20_OptoNoReward_CUT_CLEAN.nwb
-
5536_2019-06-28_09-53-01_OptoNoReward_CUT_CLEAN.nwb
-
5536_2019-07-01_11-18-06_OptoNoReward_CUT_CLEAN.nwb
-
5536_2019-07-10_09-58-51_OptoNoReward_CUT_CLEAN.nwb
-
5536_2019-07-15_16-35-32_OptoNoReward_CUT_CLEAN.nwb
-
5542_2019-06-24_15-40-55_OptoNoReward_CUT_CLEAN.nwb
-
5542_2019-06-25_15-02-54_OptoNoReward_CUT_CLEAN.nwb
-
5542_2019-06-28_15-29-39_OptoNoReward_CUT_CLEAN.nwb
-
5542_2019-07-01_12-40-02_OptoNoReward_CUT_CLEAN.nwb
-
5542_2019-07-10_11-14-19_OptoNoReward_CUT_CLEAN.nwb
-
5542_2019-07-15_12-29-21_OptoNoReward_CUT_CLEAN.nwb
-
5709_2019-04-05_16-49-16_OptoNoReward_CUT_CLEAN.nwb
-
5709_2019-04-16_16-31-30_OptoNoReward_CUT_CLEAN.nwb
-
5710_2019-04-05_16-41-50_OptoNoReward_CUT_CLEAN.nwb
-
5710_2019-04-16_15-58-31_OptoNoReward_CUT_CLEAN.nwb
-
5710_2019-04-17_16-00-09_OptoNoReward_CUT_CLEAN.nwb
-
5710_2019-04-18_15-11-43_OptoNoReward_CUT_CLEAN.nwb
-
5710_2019-04-25_14-52-25_OptoNoReward_CUT_CLEAN.nwb
-
5710_2019-04-26_14-51-03_OptoNoReward_CUT_CLEAN.nwb
-
6908_2019-04-17_11-42-43_AChOpto_CUT_CLEAN.nwb
-
DbPopulation-NoRwd_Rwd_CsAndOrOpto_TrialAndLick-20191231-144719.mat
-
README.md
Abstract
Basal forebrain cholinergic neurons modulate how organisms process and respond to environmental stimuli through impacts on arousal, attention, and memory. It is unknown, however, whether basal forebrain cholinergic neurons are directly involved in conditioned behavior, independent of secondary roles in the processing of external stimuli. Using fluorescent imaging, we found that cholinergic neurons are active during behavioral responding for a reward – even in prior to reward delivery and in the absence of discrete stimuli. Photostimulation of basal forebrain cholinergic neurons, or their terminals in the basolateral amygdala (BLA), selectively promoted conditioned responding (licking), but not unconditioned behavior nor innate motor outputs. In vivo electrophysiological recordings during cholinergic photostimulation revealed reward-contingency-dependent suppression of BLA neural activity, but not prefrontal cortex (PFC). Finally, ex vivo experiments demonstrated that photostimulation of cholinergic terminals suppressed BLA projection neuron activity via monosynaptic muscarinic-receptor-signaling, while also facilitating firing in GABAergic interneurons. Taken together, we show that the neural and behavioral effects of basal forebrain cholinergic activation are modulated by reward contingency in a target-specific manner.
README: Ephys data for "Reward contingency gates selective cholinergic suppression of amygdala neurons"
https://doi.org/10.5061/dryad.dbrv15f85
This dataset contains individual .NWB files containing all raw in vivo electrophysiological data for this project and one MATLAB (.MAT) file.
Neurodata Without Borders (NWB) is a data standard for neurophysiology, providing neuroscientists with a common standard to share, archive, use, and build common analysis tools for neurophysiology data. NWB is designed to store a variety of neurophysiology data, including data from intracellular and extracellular electrophysiology experiments, data from optical physiology experiments, and tracking and stimulus data. Neurodata Without Borders is intended to serve the broad neuroscience community and encourage the sharing of data by scientists worldwide. NWB 2.0 (https://www.nwb.org/2019/02/26/nwbn-2-0-final-released/ ) was released in February 2019. To learn more about the approach taken to develop the NWB Format, please read the open access Neuron NeuroView article (http://dx.doi.org/10.1016/j.neuron.2015.10.025) and bioRxiv preprint (https://www.biorxiv.org/content/10.1101/523035v1).
NWB files are effectively H5 files and can be read through any system that can open an H5 file. There is also a free software package for reading and working with NWB files, available in python and MATLAB versions. Please see https://nwb-overview.readthedocs.io/en/latest/ for more information on how to install these packages. The NWB files in this data set were written with version 2.0.
The NWB files contain the sorted single unit electrophysiological data, where the 'CUT_CLEAN' tag indicates that they have been sorted manually by Dr. Burgos-Robles, and that artifactual units were also removed. Each NWB file contains the data from a single session. NWB files use MouseID and Date in the filename. Initially, an additional naming convention was applied to the file tags that is now irrelevant and users may ignore this.
MATLAB is a programming and numeric computing platform used by millions of engineers and scientists to analyze data, develop algorithms, and create models. While this software package is proprietary, there is a free alternative called Octave. Although there are a number of a differences between the two platforms, usually one can load a .MAT file into the Octave environment to view the data. For more information, please see “Octave Programming Tutorial/Saving and loading a MAT-file” (https://en.wikibooks.org/wiki/Octave_Programming_Tutorial/Saving_and_loading_a_MAT-file).
MATLAB file: This file contains all preprocessed in vivo electrophysiological data for this project, in MATLAB v7.3 format. The MATLAB files contains the following variables:
tbl_id 16x23117 table
Table with 2 columns: mouse IDs and corresponding virus (ChR2 vs control eYFP)
tbl_sub 16x31917 table
Table with the same number of rows as tbl_id, with 3 additional columns representing the date on which recordings were performed for each of 3 experimental settings:
OptoNoReward_BF: Photostimulation delivered to Basal Forebrain for sessions in which it
was NOT paired with the opportunity to collect reward
OptoReward_BF: Photostimulation delivered to Basal Forebrain for sessions in which it
was paired with the opportunity to collect reward
CsAndOrOpto_Sync_BF: Photostimulation delivered to Basal Forebrain for sessions in trials
consisted of Tone Cs, Photostimulation, or the combination of both, not analyzed for this paper.
data 16x38198945961 struct
A Matlab structure with several fields, organized by mouse and session in the same 16x3 format as tbl_sub
xcorr: Cross correlations for all simultaneously collected cells
cellperi: A cell array with the peri-event activity for each cell for each event
pethset: Settings used to calculate the peri-event time histograms for all events, including the
names of each event
mask_singleunit: A logical true/false mask to indicate single units
name_area: A character for each unit to indicate which array from which it was recorded:
'B'=BLA, 'P'=PFC
ch: Channel number for each unit from which it was recorded
fr: Firing rate (in Hz) for each unit
filename: Filename from which data was extracted for each session
Subj: Subject/Mouse ID number for each session
Virus: Virus for this mouse/subject
trial_data: Trial data for the recording session
beh_data: Behavioral timestamps for the recording session
sig_name: Plexon generated name for each unit/signal
xc_bin_centers1x99792double
Cross correlation bin center timepoints in seconds
Methods
Please see methods section in the methods section of this paper:
Kimchi Eyal Y., Burgos-Robles Anthony, Matthews Gillian A., Chakoma Tatenda, Patarino Makenzie, Weddington Javier, Siciliano Cody A., Yang Wannan, Foutch Shaun, Simons Renee, Fong Ming-fai, Jing Miao, Li Yulong, Polley Daniel B., Tye Kay M. (2023) Reward contingency gates selective cholinergic suppression of amygdala neurons eLife 12:RP89093
https://doi.org/10.7554/eLife.89093.1