Skip to main content
Dryad

Data from: Centromere–associated meiotic drive and female fitness variation in Mimulus

Cite this dataset

Fishman, Lila; Kelly, John Kennedy (2015). Data from: Centromere–associated meiotic drive and female fitness variation in Mimulus [Dataset]. Dryad. https://doi.org/10.5061/dryad.dj6p6

Abstract

Female meiotic drive, in which chromosomal variants preferentially segregate to the egg pole during asymmetric female meiosis, is a theoretically pervasive but still mysterious form of selfish evolution. Like other selfish genetic elements, driving chromosomes may be maintained as balanced polymorphisms by pleiotropic or linked fitness costs. A centromere-associated driver (D) with a ∼58:42 female-specific transmission advantage occurs at intermediate frequency (32-40%) in the Iron Mountain population of the yellow monkeyflower, Mimulus guttatus. Previously determined male fertility costs are sufficient to prevent the fixation of D, but predict a higher equilibrium frequency. To better understand the dynamics and effects of D, we developed a new population genetic model and measured genotype-specific lifetime female fitness in the wild. In three of four years, and across all years, D imposed significant recessive seedset costs, most likely due to hitchhiking by deleterious mutations. With both male and female costs as measured, and 58:42 drive, our model predicts an equilibrium frequency of D (38%) very close to the observed value. Thus, D represents a rare selfish genetic element whose local population genetic dynamics have been fully parameterized, and the observation of equilibrium sets the stage for investigations of co-evolution with suppressors.

Usage notes

Location

Oregon
Iron Mountain