Skip to main content
Dryad

History of the Giraffe Pipe locality inferred from microfossil remains: A thriving freshwater ecosystem near the Arctic Circle during the warm Eocene

Cite this dataset

Siver, Peter (2022). History of the Giraffe Pipe locality inferred from microfossil remains: A thriving freshwater ecosystem near the Arctic Circle during the warm Eocene [Dataset]. Dryad. https://doi.org/10.5061/dryad.djh9w0w3s

Abstract

How will freshwater lakes in the Arctic respond to climate change, especially if polar amplification results in even greater warming at these northern latitudes? Deep-time analogs offer opportunities to understand the potential impacts of future climate warming on Arctic environments. The Giraffe Pipe fossil locality located in the Northwest Territories of Canada offers a window into the life of a thriving Arctic freshwater ecosystem in the Eocene under greenhouse conditions. The remains of an extensive deposit of microfossils, including photosynthetic protists (chrysophytes, diatoms and green algae), heterotrophic protists (euglyphids, heliozoans, paraphysomonads, and rotosphaerids), and sponges, were used to reconstruct the history of the ancient water body. The concentrations and diversity of chrysophyte taxa were extensive throughout the core, accounting for over 70 % of the microfossil remains. The ratio of chrysophyte cysts to diatom valves, with a mean value near 14 throughout the core, further emphasized the dominance of the chrysophytes, and given the high diversity of taxa the locality represents a “paleo-hotspot” for this eukaryote lineage. Based on the totality of fossil evidence, the waterbody within the Giraffe Pipe crater represented a series of relatively shallow aquatic habitats, with changing physical and chemical conditions and varying water depths. Five major zones were identified, each found to be stable for an extended period of time, but with distinct transitions between successive zones signaling significant shifts in environmental conditions. The study provides valuable insight into how Arctic freshwater ecosystems responded to past warm climates, and to the organisms that could potentially thrive in these environments under future warming scenarios.

Methods

Analysis of an extensive drilled core from the Giraffe Pipe fossil locality. Rock samples were removed from specific depths along the core, and oxidized with different acid treatments resulting in aqueous slurries containing siliceous microfossils. Each sample was then studied with scanning electron microscopy and light microscopy. Identifications of all organisms were identified, quantified, and used in the analysis. Step-by-step details are contained within the publication in the Journal of Paleontology.

Usage notes

Microsoft excel

Funding

National Science Foundation, Award: EAR-1725265

National Science Foundation of Sri Lanka, Award: EAR–1940070