Skip to main content
Dryad logo

Measuring quality of routine primary care data

Citation

Kostopoulou, Olga; Delaney, Brendan (2021), Measuring quality of routine primary care data, Dryad, Dataset, https://doi.org/10.5061/dryad.dncjsxkzh

Abstract

Objective: Routine primary care data may be used for the derivation of clinical prediction rules and risk scores. We sought to measure the impact of a decision support system (DSS) on data completeness and freedom from bias.

Materials and Methods: We used the clinical documentation of 34 UK General Practitioners who took part in a previous study evaluating the DSS. They consulted with 12 standardized patients. In addition to suggesting diagnoses, the DSS facilitates data coding. We compared the documentation from consultations with the electronic health record (EHR) (baseline consultations) vs. consultations with the EHR-integrated DSS (supported consultations). We measured the proportion of EHR data items related to the physician’s final diagnosis. We expected that in baseline consultations, physicians would document only or predominantly observations related to their diagnosis, while in supported consultations, they would also document other observations as a result of exploring more diagnoses and/or ease of coding.

Results: Supported documentation contained significantly more codes (IRR=5.76 [4.31, 7.70] P<0.001) and less free text (IRR = 0.32 [0.27, 0.40] P<0.001) than baseline documentation. As expected, the proportion of diagnosis-related data was significantly lower (b=-0.08 [-0.11, -0.05] P<0.001) in the supported consultations, and this was the case for both codes and free text.

Conclusions: We provide evidence that data entry in the EHR is incomplete and reflects physicians’ cognitive biases. This has serious implications for epidemiological research that uses routine data. A DSS that facilitates and motivates data entry during the consultation can improve routine documentation.

Funding

Cancer Research UK, Award: C37891/A25310