Skip to main content
Dryad

Data from: Population dynamics of a northern-adapted mammal: disentangling the influence of predation and climate change

Data files

Dec 31, 2014 version files 13.40 KB

Abstract

Community structure and interspecific interactions are particularly vulnerable to rapidly changing climatic regimes. Recent changes in both climate and vertebrate community assemblages have created a unique opportunity to examine the impacts of two dynamic forces on population regulation. We examined the effects of warming winter conditions and the reestablishment of a previously extirpated predator, the fisher (Martes pennanti), on regulatory mechanisms in a northern-adapted mammal, the porcupine (Erethizon dorsatum), along their southern range boundary. Using a long-term (17-year) capture–recapture data set, we (1) quantified the impacts of climate change and increased fisher predation on the survival of adult porcupines at their regional southern terminus, (2) assessed recruitment (via both adult fecundity and juvenile survival) of porcupines, and (3) modeled the relative importance of predation and winter conditions on the demography and population growth rate (λ). Severe winters and abundant predators interacted synergistically to reduce adult survivorship by as much as 44%, while expanding predator populations led to near reproductive failure among porcupines. Increasing predatory pressure, disruptions in this community module, and more frequent extreme winter weather events led to predicted extirpation within 50 years, whereas in the absence of predators, the population was viable. Our results provide a mechanistic understanding behind distributional shifts resulting from climate change and may be broadly relevant for predicting future distributional shifts in other northern-adapted mammalian species.