Skip to main content

Data from: How much information is needed to infer reticulate evolutionary histories?


Huber, Katharina T.; van Iersel, Leo; Moulton, Vincent; Wu, Taoyang (2014), Data from: How much information is needed to infer reticulate evolutionary histories?, Dryad, Dataset,


Phylogenetic networks are a generalization of evolutionary trees and are an important tool for analyzing reticulate evolutionary histories. Recently, there has been great interest in developing new methods to construct rooted phylogenetic networks, that is, networks whose internal vertices correspond to hypothetical ancestors, whose leaves correspond to sampled taxa, and in which vertices with more than one parent correspond to taxa formed by reticulate evolutionary events such as recombination or hybridization. Several methods for constructing evolutionary trees use the strategy of building up a tree from simpler building blocks (such as triplets or clusters), and so it is natural to look for ways to construct networks from smaller networks. In this paper we shall demonstrate a fundamental issue with this approach. Namely, we show that even if we are given all of the subnetworks induced on all proper subsets of the leaves of some rooted phylogenetic network, we still do not have all of the information required to completely determine that network. This implies that even if all of the building blocks for some reticulate evolutionary history were to be taken as the input for any given network building method, the method might still output an incorrect history. We also discuss some potential consequences of this result for constructing phylogenetic networks.

Usage notes