Skip to main content
Dryad

Root functional traits and growth rates in savanna trees and grasses

Data files

Sep 11, 2023 version files 23.50 KB

Abstract

Root-based functional traits are relatively overlooked as drivers of savanna plant community dynamics, an important gap in water-limited ecosystems. Recent work has shed light on patterns of trait coordination in roots, but less is known about the relationship between root functional traits, water acquisition, and plant demographic rates. Here, we investigated how fine-root vascular and morphological traits are related in two dominant PFTs (C3 trees and C4 grasses from the savanna biome), whether root traits can predict plant relative growth rate (RGR), and whether root trait relationships differ in trees and grasses. We used root data from 21 tree and 18 grass species grown under greenhouse conditions, and quantified a suite of vascular and morphological root traits. We used a principal components analysis (PCA) to identify common axes of trait variation, compared trait correlation matrices between the two PFTs, and investigated the relationship between PCA axes and individual traits and RGR. We found that there was no clear single axis integrating vascular and morphological traits, but found that vascular anatomy predicted RGR in both trees and grasses. Trait correlation matrices differed in trees and grasses, suggesting potentially divergent patterns of trait coordination between the two functional types. Our results suggested that, despite differences in trait relationships between trees and grasses, root conductivity may constrain maximum growth rate in both PFTs, highlighting the critical role that water relations play in savanna vegetation dynamics and suggesting that root water transport capacity is an important predictor of plant performance in the savanna biome.