Skip to main content
Dryad logo

Data from: The role of geospatial hotspots in the spatial spread of tuberculosis in rural Ethiopia: a mathematical modelling

Citation

Shaweno, Debebe; Trauer, James M.; Denholm, Justin T.; McBryde, Emma S. (2018), Data from: The role of geospatial hotspots in the spatial spread of tuberculosis in rural Ethiopia: a mathematical modelling, Dryad, Dataset, https://doi.org/10.5061/dryad.fg3js19

Abstract

Geospatial tuberculosis hotspots are hubs of TB transmission both within and across community groups. We aimed to quantify the extent to which these hotspots account for the spatial spread of TB in a high-burden setting. We developed spatially coupled models to quantify the spread of TB from geographic hotspots to distant regions in rural Ethiopia. The population was divided into three ‘patches’ based on their proximity to transmission hotspots, namely hotspots, adjacent regions and remote regions. The models were fitted to five-year notification data aggregated by the metapopulation structure. Model fitting was achieved with a Metropolis-Hastings algorithm using a Poisson likelihood to compare model-estimated notification rate with observed notification rates. A cross-coupled metapopulation model with assortative mixing by region closely fit to notification data as assessed by the Deviance Information Criterion. We estimated 45 hotspot-to-adjacent regions transmission events and 2 hotspot-to-remote regions transmission events occurred for every 1000 hotspot-to-hotspot transmission events. Although the degree of spatial coupling is weak, the proportion of infections in the adjacent region that resulted from mixing with hotspots was high due to the high prevalence of TB cases in a hotspot region, with approximately 75% of infections attributable to hotspot contact. Our results suggest that the role of hotspots in the geospatial spread of TB in rural Ethiopia is limited, implying that TB transmission is primarily locally driven.

Usage Notes

Location

Ethiopia