Skip to main content

Data from: Maternal investment increases with altitude in a frog on the Tibetan plateau

Cite this dataset

Chen, Wei (2013). Data from: Maternal investment increases with altitude in a frog on the Tibetan plateau [Dataset]. Dryad.


Reproducing females can allocate energy between the production of eggs or offspring of different size or number, both of which can strongly influence fitness. The physical capacity to store developing offspring imposes constraints on maximum clutch volume, but individual females and populations can trade off whether more or fewer eggs or offspring are produced, and their relative sizes. Harsh environments are likely to select for larger egg or offspring size, and many vertebrate populations compensate for this reproductive investment through an increase in female body size. We report a different trade-off in a frog endemic to the Tibetan Plateau, Rana kukunoris. Females living at higher altitudes (n = 11 populations, 2000–3500 m) produce larger eggs, but without a concomitant increase in female body size or clutch size. The reduced diel and seasonal activity at high altitudes may impose constraints on the maximum body size of adult frogs, by limiting the opportunity for energy accumulation. Simultaneously, producing larger eggs likely helps to increase the rate of embryonic development, causing tadpoles to hatch earlier. The gelatinous matrix surrounding eggs, more of which is produced by large females, may help buffer developing embryos from temperature fluctuations or offer protection from ultraviolet radiation. High-altitude frogs on the Tibetan Plateau employ a reproductive strategy that favours large egg size independent of body size, which is unusual in amphibians. The harsh and unpredictable environmental conditions at high altitudes can thus impose strong and opposing selection pressures on adult and embryonic life stages, both of which can simultaneously influence fitness.

Usage notes