Skip to main content
Dryad

COI metabarcoding data from arthropod pollinator communities in burned and unburned sites of California

Data files

Jan 09, 2024 version files 1.35 GB

Abstract

Novel wildfire regimes are rapidly changing global ecosystems and pose significant challenges for biodiversity conservation and ecosystem management. In this study, we used DNA metabarcoding to assess the response of arthropod pollinator communities to large-scale wildfires across diverse habitat types in California. We sampled six reserves within the University of California Natural Reserve System (UCNRS), each of which was partially burned in the 2020 Lightning Complex wildfires in California. Using yellow pan traps to target pollinators, we collected arthropods from burned and unburned sites across multiple habitat types including oak woodland, redwood, scrub, chamise, grassland, forest, and serpentine habitats. We found no significant difference in alpha diversity values between burned and unburned sites; instead, seasonal variations played a significant role in arthropod community dynamics, with the emergence of plant species in Spring promoting increased pollinator richness at all sites. When comparing all sites, we found that burn status was not a significant grouping factor. Instead, compositional differences were largely explained by geographic differences, with distinct communities within each reserve. Within a geographic area, the response of arthropods to fire was dependent on habitat type. While communities in grasslands and oak woodlands exhibited recovery following burn, scrublands experienced substantial changes in community composition. Our study highlights the importance of examining community responses to wildfires across broad spatial scales and diverse habitat types. By understanding the nuanced dynamics of arthropod communities in response to fire disturbances, we can develop effective conservation strategies that promote resilience and maintain biodiversity in the face of increasing wildfire frequency and severity driven by climate change.