Skip to main content
Dryad

Data from: Potentials of closed contour analysis in species differentiation and holotype designation: a case study on lower Norian (Upper Triassic) conodonts

Abstract

Geometric morphometric approaches become increasingly applied in the fields of biology and paleontology. Taxonomy is a good example, where a long-standing intention of scientists is to eliminate subjectivity as much as possible. In the case of biostratigraphically important conodont elements, the application of such methods is not widespread. Indeed, only a handful of studies attempted to deal with the morphological variance of conodont elements from this aspect. The detailed description of five lower Norian (Upper Triassic) taxa (Ancyrogondolella quadrata, A. rigoi, A. triangularis, A. uniformis and Metapolygnathus mazzai) is presented here based on landmarks and Fourier analysis of the P1 element and keel outlines. Both methods led to similar outcomes regarding taxonomic differentiation and exposing shape variability. Consensus shapes were generated to objectively reveal the typical contour shape of each taxon, which allowed their comparison with each other, and with the members of their respective sample population including the holotypes. The results pointed out that the holotype of a taxon is generally not an average representative, but rather a peripheral form with well-separable morphological characteristics. Ancyrogondolella quadrata and A. rigoi turned out to represent a morphological continuum with ample transitional forms between these two end-members that may cause bias in their biostratigraphic applicability; however, their combined shape variance seems to be too large for uniting them into a single species. Given the results that may be too subtle to realize based solely on qualitative observations, future taxonomic studies and type material designation could greatly benefit from the application of similar methodologies.