Skip to main content
Dryad

Fertility loss and recovery dynamics after repeated heat stress across life stages in male Drosophila melanogaster: Patterns and processes

Data files

Jul 18, 2024 version files 394 KB
Sep 12, 2024 version files 351.55 KB

Abstract

Frequent and extreme temperatures associated with climate change pose a major threat to biodiversity, particularly for organisms whose metabolism is strictly linked to ambient temperatures. Many studies have explored thermal effects on survival, but heat-induced fertility loss is emerging as a greater threat to population persistence. However, while evidence is accumulating both juvenile and adult stages heat exposure can impair fertility in their own ways, much less is known about the immediate and longer-term fitness consequences of repeated heat stress across life stages. To address this knowledge gap, we used male Drosophila melanogaster to investigate (i) the cumulative fitness effects of repeated heatwaves across life stages, (ii) the potential of recovery from these heat-exposed, and (iii) the underlying mechanisms. We found individual and combined effects of chronic juvenile and acute adult heat stress on male fitness traits. These effects tended to exacerbate over several days after brief heat exposure, indicating a substantial fertility loss for these short-lived organisms. Our findings highlight the cumulative and persistent effects of heat stress on fitness. Such combined effects could accelerate population declines, particularly in more vulnerable species, emphasizing the importance of considering reproduction and its recovery for more accurate models of species persistence.