Skip to main content
Dryad

Global overview of cloud-, snow-, and shade-free Landsat (1982-2023) and Sentinel-2 (2015-2023) data

Data files

Mar 12, 2024 version files 17.97 GB

Abstract

Landsat and Sentinel-2 acquisitions are among the most frequently used medium-resolution (i.e., 10-30 m) optical data. The data are extensively used in terrestrial vegetation applications, including but not limited to, land cover and land use mapping, vegetation condition and phenology monitoring, and disturbance and change mapping. While the Landsat archives alone provide over 40 years, and counting, of continuous and consistent observations, since mid-2015 Sentinel-2 has enabled a revisit frequency of up to 2-days. Although the spatio-temporal availability of both data archives is well-known at the scene level, information on the actual availability of usable (i.e., cloud-, snow-, and shade-free) observations at the pixel level needs to be explored for each study to ensure correct parametrization of used algorithms, thus robustness of subsequent analyses. However, a priori data exploration is time and resource‑consuming, thus is rarely performed. As a result, the spatio-temporal heterogeneity of usable data is often inadequately accounted for in the analysis design, risking ill-advised selection of algorithms and hypotheses, and thus inferior quality of final results. Here we present a global dataset comprising precomputed daily availability of usable Landsat and Sentinel-2 data sampled at a pixel-level in a regular 0.18°-point grid. We based the dataset on the complete 1982-2023 Landsat surface reflectance data (Collection 2) and 2015-2023 Seninel-2 top-of-the-atmosphere reflectance scenes (pre‑Collection-1 and Collection-1). Derivation of cloud-, snow-, and shade-free observations followed the methodology developed in our recent study on data availability over Europe (Lewińska et al., 2023; https://doi.org/10.20944/preprints202308.2174.v2). Furthermore, we expanded the dataset with growing season information derived based on the 2001‑2019 time series of the yearly 500 m MODIS land cover dynamics product (MCD12Q2; Collection 6). As such, our dataset presents a unique overview of the spatio-temporal availability of usable daily Landsat and Sentinel-2 data at the global scale, hence offering much-needed a priori information aiding the identification of appropriate methods and challenges for terrestrial vegetation analyses at the local to global scales. The dataset can be viewed using the dedicated GEE App (link in Related Works).