Data from: Impacts of growing-season climate on tree growth and post-fire regeneration in ponderosa pine and Douglas-fir forests
Cite this dataset
Hankin, Lacey E.; Higuera, Philip E.; Davis, Kimberley T.; Dobrowski, Solomon Z. (2019). Data from: Impacts of growing-season climate on tree growth and post-fire regeneration in ponderosa pine and Douglas-fir forests [Dataset]. Dryad. https://doi.org/10.5061/dryad.gt22vt4
Abstract
We studied the impacts of climate variability on low-elevation forests in the U.S. northern Rocky Mountains by quantifying how post-fire tree regeneration and radial growth varied with growing-season climate. We reconstructed post-fire regeneration and radial growth rates of Pinus ponderosa and Pseudotsuga menziesii at 33 sites that burned between 1992 and 2007, by aging seedlings at the root-shoot boundary. We also measured radial growth in adult trees from 12 additional sites that burned between 1900 and 1990. To quantify the relationship between climate and regeneration, we characterized seasonal climate before, during, and after recruitment pulses using superposed epoch analysis. To quantify growth sensitivity to climate, we performed moving regression analysis for each species and for juvenile and adult life stages. Climatic conditions favoring regeneration and tree growth differed between species. Water deficit and temperature were significantly lower than average during recruitment pulses of ponderosa pine, suggesting that germination-year climate limits regeneration. Growing degree days were significantly higher than average during years with Douglas-fir recruitment pulses, but water deficit was significantly lower one year following pulses, suggesting moisture sensitivity in two-year-old seedlings. Growth was also sensitive to water deficit, but effects varied between life stages, species, and through time, with juvenile ponderosa pine growth more sensitive to climate than adult growth and juvenile Douglas-fir growth. Increasing water deficit corresponded with reduced adult growth of both species. Increases in maximum temperature and water deficit corresponded with increases in juvenile growth of both species in the early 20th century but strong reductions in growth for juvenile ponderosa pine in recent decades. Changing sensitivity of growth to climate suggests that increased temperature and water deficit may be pushing these species towards the edge of their climatic tolerances. Our study demonstrates increased vulnerability of dry mixed-conifer forests to post-fire regeneration failures and decreased growth as temperatures and drought increase. Shifts towards unfavorable conditions for regeneration and juvenile growth may alter the composition and resilience of low-elevation forests to future climate and fire activity.
Usage notes
Location
Rocky Mountains
Montana
northern Rocky Mountains
Idaho