Skip to main content
Dryad

Data from: The association of outdoor activity and age-related cataract in a rural population of Taizhou Eye Study: phase 1 report

Cite this dataset

Tang, Yating et al. (2016). Data from: The association of outdoor activity and age-related cataract in a rural population of Taizhou Eye Study: phase 1 report [Dataset]. Dryad. https://doi.org/10.5061/dryad.gt410

Abstract

Purpose: To study the relationship between outdoor activity and risk of age-related cataract (ARC) in a rural population of Taizhou Eye Study (phrase 1 report). Method: A population-based, cross-sectional study of 2006 eligible rural adults (≥45 years old) from Taizhou Eye Study was conducted from Jul. to Sep. 2012. Participants underwent detailed ophthalmologic examinations including uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), intraocular pressure (IOP), slit lamp and fundus examinations as well as questionnaires about previous outdoor activity and sunlight protection methods. ARC was recorded by LOCSⅢ classification system. The prevalence of cortical, nuclear and posterior subcapsular cataract were assessed separately for the risk factors and its association with outdoor activity. Results: Of all 2006 eligible participants, 883 (44.0%) adults were diagnosed with ARC. The prevalence rates of cortical, nuclear and posterior subcapsular cataract per person were 41.4%, 30.4% and 1.5%, respectively. Women had a higher tendency of nuclear and cortical cataract than men (OR = 1.559, 95% CI 1.204–2.019 and OR = 1.862, 95% CI 1.456–2.380, respectively). Adults with high myopia had a higher prevalence of nuclear cataract than adults without that (OR = 2.528, 95% CI 1.055–6.062). Multivariable logistic regression revealed that age was risk factor of nuclear (OR = 1.190, 95% CI 1.167–1.213) and cortical (OR = 1.203, 95% CI 1.181–1.226) cataract; eyes with fundus diseases was risk factor of posterior subcapsular cataract (OR = 6.529, 95% CI 2.512–16.970). Outdoor activity was an independent risk factor of cortical cataract (OR = 1.043, 95% CI 1.004–1.083). The risk of cortical cataract increased 4.3% (95% CI 0.4%-8.3%) when outdoor activity time increased every one hour. Furthermore, the risk of cortical cataract increased 1.1% (95% CI 0.1%-2.0%) when cumulative UV-B exposure time increased every one year. Conclusion: Outdoor activity was an independent risk factor for cortical cataract, but was not risk factor for nuclear and posterior subcapsular cataract. The risk of cortical cataract increased 4.3% when outdoor activity time increased every one hour. In addition, the risk of cortical cataract increased 1.1% (95% CI 0.1%-2.0%) when cumulative UV-B exposure time increased every one year.

Usage notes