Oophaga sylvatica decahydroquinoline quantification
Data files
Dec 13, 2024 version files 11.71 GB
-
CatyS_13226__AF1__zh_019b2.raw
174.78 MB
-
CatyS_13226__AF10__zh_025b2.raw
175.15 MB
-
CatyS_13226__AF11__zh_042b2.raw
177.12 MB
-
CatyS_13226__AF12__zh_021b2.raw
175.02 MB
-
CatyS_13226__AF2__zh_024b2.raw
176.30 MB
-
CatyS_13226__AF3__zh_045b2.raw
177.35 MB
-
CatyS_13226__AF4__zh_018b2.raw
174.97 MB
-
CatyS_13226__AF5__zh_017b2.raw
175.24 MB
-
CatyS_13226__AF6__zh_046b2.raw
176.91 MB
-
CatyS_13226__AF7__zh_050b2.raw
175.90 MB
-
CatyS_13226__AF8__zh_048b2.raw
176.38 MB
-
CatyS_13226__AF9__zh_043b2.raw
175.95 MB
-
CatyS_13226__blank-MeOH__zh_002b2.raw
199.16 MB
-
CatyS_13226__blank-MeOH__zh_004b2.raw
200.92 MB
-
CatyS_13226__blank-MeOH__zh_006b2.raw
199.01 MB
-
CatyS_13226__blank-MeOH__zh_008b2.raw
197.74 MB
-
CatyS_13226__blank-MeOH__zh_010b2.raw
198.13 MB
-
CatyS_13226__blank-MeOH__zh_012b2.raw
196.90 MB
-
CatyS_13226__blank-MeOH__zh_014b2.raw
195.92 MB
-
CatyS_13226__blank-MeOH__zh_016b2.raw
197.15 MB
-
CatyS_13226__blank-MeOH__zh_028b2.raw
196.16 MB
-
CatyS_13226__blank-MeOH__zh_030b2.raw
195.43 MB
-
CatyS_13226__blank-MeOH__zh_032b2.raw
195.61 MB
-
CatyS_13226__blank-MeOH__zh_034b2.raw
195.67 MB
-
CatyS_13226__blank-MeOH__zh_036b2.raw
195.66 MB
-
CatyS_13226__blank-MeOH__zh_038b2.raw
196.53 MB
-
CatyS_13226__blank-MeOH__zh_040b2.raw
196.97 MB
-
CatyS_13226__blank-MeOH__zh_054b2.raw
196.37 MB
-
CatyS_13226__blank-MeOH__zh_056b2.raw
195.97 MB
-
CatyS_13226__blank-MeOH__zh_058b2.raw
196.51 MB
-
CatyS_13226__blank-MeOH__zh_060b2.raw
198.44 MB
-
CatyS_13226__blank-MeOH__zh_062b2.raw
202.18 MB
-
CatyS_13226__blank-MeOH__zh_064b2.raw
203.49 MB
-
CatyS_13226__blank-MeOH__zh_066b2.raw
204.95 MB
-
CatyS_13226__OS1__zh_053b2.raw
174.38 MB
-
CatyS_13226__OS10__zh_027b2.raw
173.80 MB
-
CatyS_13226__OS11__zh_023b2.raw
174.22 MB
-
CatyS_13226__OS12__zh_049b2.raw
175.14 MB
-
CatyS_13226__OS2__zh_051b2.raw
174.03 MB
-
CatyS_13226__OS3__zh_022b2.raw
174.13 MB
-
CatyS_13226__OS4__zh_020b2.raw
174.79 MB
-
CatyS_13226__OS5__zh_044b2.raw
175.37 MB
-
CatyS_13226__OS6__zh_047b2.raw
174.70 MB
-
CatyS_13226__OS7__zh_026b2.raw
173.69 MB
-
CatyS_13226__OS8__zh_052b2.raw
171.77 MB
-
CatyS_13226__OS9__zh_041b2.raw
175.76 MB
-
CatyS_13226__StdA-0o005__zh_015b2.raw
174.51 MB
-
CatyS_13226__StdA-0o005__zh_039b2.raw
175.18 MB
-
CatyS_13226__StdA-0o005__zh_065b2.raw
176.50 MB
-
CatyS_13226__StdB-0o001__zh_013b2.raw
173.73 MB
-
CatyS_13226__StdB-0o001__zh_037b2.raw
174.69 MB
-
CatyS_13226__StdB-0o001__zh_063b2.raw
175.08 MB
-
CatyS_13226__StdC-0o0005__zh_011b2.raw
173.98 MB
-
CatyS_13226__StdC-0o0005__zh_035b2.raw
174.91 MB
-
CatyS_13226__StdC-0o0005__zh_061b2.raw
176.02 MB
-
CatyS_13226__StdD-0o0001__zh_009b2.raw
174.91 MB
-
CatyS_13226__StdD-0o0001__zh_033b2.raw
174.05 MB
-
CatyS_13226__StdD-0o0001__zh_059b2.raw
175.44 MB
-
CatyS_13226__StdE-0o00005__zh_007b2.raw
174.76 MB
-
CatyS_13226__StdE-0o00005__zh_031b2.raw
174.28 MB
-
CatyS_13226__StdE-0o00005__zh_057b2.raw
176.03 MB
-
CatyS_13226__StdF-0__zh_005b2.raw
176.65 MB
-
CatyS_13226__StdF-0__zh_029b2.raw
174.17 MB
-
CatyS_13226__StdF-0__zh_055b2.raw
174.45 MB
-
Feeding_experiment_alkaloids_metadata.xlsx
10.73 KB
-
README.md
2.29 KB
Abstract
Shifts in microbiome community composition can have large effects on host health. It is therefore important to understand how perturbations, like those caused by the introduction of exogenous chemicals, modulate microbiome community composition. In poison frogs within the family Dendrobatidae, the skin microbiome is exposed to the alkaloids that the frogs sequester from their diet and use for defense. Given the demonstrated antimicrobial effects of these poison frog alkaloids, these compounds may be structuring the skin microbial community. To test this, we first characterized microbial communities from chemically defended and closely related non-defended frogs from Ecuador. Then we conducted a laboratory experiment to monitor the effect of the alkaloid decahydroquinoline (DHQ) on the microbiome of a single frog species. In both the field and lab experiments, we found that alkaloid-exposed microbiomes are more species rich and phylogenetically diverse, with an increase in rare taxa. To better understand the strain-specific behavior in response to alkaloids, we cultured microbial strains from poison frog skin and found the majority of strains exhibited either enhanced growth or were not impacted by the addition of DHQ. Additionally, stable isotope tracing coupled to nanoSIMS suggests that some of these strains are able to metabolize DHQ. Taken together, these data suggest that poison frog chemical defenses open new niches for skin-associated microbes with specific adaptations, including the likely metabolism of alkaloids, that enable their survival in this toxic environment. This work helps expand our understanding of how exposure to exogenous compounds like alkaloids can impact host microbiomes.
Other data related to this manuscript can be found in the following locations:
https://doi.org/10.5061/dryad.5qfttdzd5, Wild dendrobatid frog microbiomes - bacteria
https://doi.org/10.5061/dryad.gxd2547t1, Oophaga sylvatica decahydroquinoline quantification
https://doi.org/10.5061/dryad.9ghx3ffqn, Ecuadorian Dendrobatid frog alkaloid profiles
https://doi.org/10.5061/dryad.tdz08kq62, Feeding experiment microbiome - bacteria
https://doi.org/10.5061/dryad.4mw6m90hn, Feeding experiment microbiome - fungi
https://doi.org/10.5061/dryad.2ngf1vhzc, Poison frog microbiome metagenomics data
https://doi.org/10.5061/dryad.9cnp5hqrm, Wild dendrobatid microbiomes – fungi
README: Oophaga sylvatica decahydroquinoline quantification
https://doi.org/10.5061/dryad.gxd2547t1
This Liquid Chromatography Mass Spectrometry (LCMS) data was generated in a controlled feeding experiment to test for the role of the alkaloid decahydroquinoline (DHQ) in shaping the skin microbiome of the frogs Oophaga sylvatica and Allobates femoralis. The quantity of DHQ was measured at the end of the experiment. Files are raw data from a Waters Acquity UPLC and Thermo Exploris 240 BioPharma orbitrap mass spectrometer. Files include mass to charge ratios, retention times, and intensities. Data files can also be opened with various open source software, including OpenChrom (https://www.openchrom.net/).
Other data related to this manuscript can be found in the following locations:
https://doi.org/10.5061/dryad.5qfttdzd5, Wild dendrobatid frog microbiomes - bacteria
https://doi.org/10.5061/dryad.gxd2547t1, Oophaga sylvatica decahydroquinoline quantification
https://doi.org/10.5061/dryad.9ghx3ffqn, Ecuadorian Dendrobatid frog alkaloid profiles
https://doi.org/10.5061/dryad.tdz08kq62, Feeding experiment microbiome - bacteria
https://doi.org/10.5061/dryad.4mw6m90hn, Feeding experiment microbiome - fungi
https://doi.org/10.5061/dryad.2ngf1vhzc, Poison frog microbiome metagenomics data
https://doi.org/10.5061/dryad.9cnp5hqrm, Wild dendrobatid microbiomes – fungi
Sample Metadata
See details in file Feeding_experiment_alkaloids_metadata.xlsx
- Sample Name: name of corresponding data file
- Sample Type: Frog, standard curve sample, or blank
- Frog Number: Corresponds to frog number in other feeding experiment data
- Frog Species: Either OS (Oophaga sylvatica) or AF (Allobates femoralis)
- Treatment: Frogs either received DHQ (toxic) or a vehicle control (non-toxic) in the feeding experiment.
Cells are blank where the columns are not applicable to the sample.