Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation (Part 2/2)
Data files
Aug 30, 2023 version files 256.52 GB
-
CRA01_171117_171129.zip
755.89 MB
-
CRA01_171129_171208.zip
599.59 MB
-
CRA01_171208_171220.zip
772.81 MB
-
CRA01_171220_180112.zip
1.45 GB
-
CRA01_180112_180129.zip
1.09 GB
-
CRA01_180129_180214.zip
1.03 GB
-
CRA01_180214_180228.zip
924.80 MB
-
CRA01_180228_180314.zip
931.62 MB
-
CRA01_180314_180328.zip
916.13 MB
-
CRA01_180328_180423.zip
1.73 GB
-
CRA01_180423_180521.zip
1.88 GB
-
CRA01_180521_180709.zip
3.38 GB
-
CRA01_181121_181205.zip
889.49 MB
-
CRA01_181205_181226.zip
1.31 GB
-
CRA01_181226_190116.zip
1.29 GB
-
CRA01_190116_190204.zip
1.20 GB
-
CRA01_190204_190225.zip
1.30 GB
-
CRA01_190225_190318.zip
1.36 GB
-
CRA01_190318_190408.zip
1.39 GB
-
CRA01_190408_190426.zip
999.75 MB
-
CRA01_190426_190520.zip
1.43 GB
-
CRA01_190520_190605.zip
1.10 GB
-
CRA01_190612_190627.zip
1.01 GB
-
CRA01_191120_191127.zip
674.61 MB
-
CRA01_191127_191211.zip
1.36 GB
-
CRA01_191211_191225.zip
1.37 GB
-
CRA01_191225_200108.zip
1.36 GB
-
CRA01_200108_200122.zip
1.39 GB
-
CRA01_200122_200205.zip
1.36 GB
-
CRA01_200205_200219.zip
1.40 GB
-
CRA01_200219_200306.zip
1.58 GB
-
CRA01_200306_200318.zip
1.21 GB
-
CRA01_200318_200403.zip
1.61 GB
-
CRA01_200403_200415.zip
1.23 GB
-
CRA01_200415_200430.zip
1.59 GB
-
CRA01_200501_200531.zip
3.20 GB
-
CRA01_200601_200624.zip
2.43 GB
-
CRA02_171117_171129.zip
762.22 MB
-
CRA02_171129_171208.zip
601.78 MB
-
CRA02_171208_171220.zip
767.43 MB
-
CRA02_171220_180112.zip
1.46 GB
-
CRA02_180112_180129.zip
1.08 GB
-
CRA02_180129_180214.zip
1.02 GB
-
CRA02_180214_180228.zip
913.54 MB
-
CRA02_180228_180314.zip
932.97 MB
-
CRA02_180314_180328.zip
926.12 MB
-
CRA02_180328_180423.zip
1.73 GB
-
CRA02_180423_180521.zip
1.91 GB
-
CRA02_180521_180709.zip
3.43 GB
-
CRA02_181121_181205.zip
891.54 MB
-
CRA02_181205_181226.zip
1.31 GB
-
CRA02_181226_190116.zip
1.28 GB
-
CRA02_190116_190204.zip
1.20 GB
-
CRA02_190204_190225.zip
1.29 GB
-
CRA02_190225_190318.zip
1.37 GB
-
CRA02_190318_190408.zip
1.40 GB
-
CRA02_190408_190426.zip
1.01 GB
-
CRA02_190426_190520.zip
1.63 GB
-
CRA02_190520_190612.zip
1.60 GB
-
CRA02_190612_190627.zip
231.87 MB
-
CRA02_191120_191127.zip
672.32 MB
-
CRA02_191127_191211.zip
1.34 GB
-
CRA02_191211_191225.zip
1.37 GB
-
CRA02_191225_200108.zip
1.34 GB
-
CRA02_200108_200122.zip
1.38 GB
-
CRA02_200122_200205.zip
1.35 GB
-
CRA02_200205_200219.zip
1.39 GB
-
CRA02_200219_200306.zip
1.57 GB
-
CRA02_200306_200318.zip
1.20 GB
-
CRA02_200318_200403.zip
1.59 GB
-
CRA02_200403_200415.zip
1.22 GB
-
CRA02_200415_200430.zip
1.56 GB
-
CRA02_200501_200531.zip
3.15 GB
-
CRA02_200601_200624.zip
2.43 GB
-
CRA03_171117_171129.zip
796 MB
-
CRA03_171129_171208.zip
614.66 MB
-
CRA03_171208_171220.zip
794.61 MB
-
CRA03_171220_180112.zip
1.52 GB
-
CRA03_180112_180129.zip
1.13 GB
-
CRA03_180129_180214.zip
1.07 GB
-
CRA03_180214_180228.zip
940.22 MB
-
CRA03_180228_180314.zip
959.06 MB
-
CRA03_180314_180328.zip
956.58 MB
-
CRA03_180328_180423.zip
1.79 GB
-
CRA03_180423_180521.zip
1.97 GB
-
CRA03_180521_180709.zip
3.52 GB
-
CRA03_181121_181205.zip
931.92 MB
-
CRA03_181205_181226.zip
1.36 GB
-
CRA03_181226_190116.zip
1.34 GB
-
CRA03_190116_190204.zip
1.26 GB
-
CRA03_190204_190225.zip
1.34 GB
-
CRA03_190225_190318.zip
1.42 GB
-
CRA03_190318_190408.zip
1.45 GB
-
CRA03_190408_190426.zip
1.03 GB
-
CRA03_190426_190520.zip
1.66 GB
-
CRA03_190520_190612.zip
1.63 GB
-
CRA03_190612_190627.zip
1.04 GB
-
CRA03_191120_191127.zip
696.01 MB
-
CRA03_191127_191211.zip
1.40 GB
-
CRA03_191211_191225.zip
1.43 GB
-
CRA03_191225_200108.zip
1.41 GB
-
CRA03_200108_200122.zip
1.44 GB
-
CRA03_200122_200205.zip
1.42 GB
-
CRA03_200205_200219.zip
1.45 GB
-
CRA03_200219_200306.zip
1.64 GB
-
CRA03_200306_200318.zip
1.26 GB
-
CRA03_200318_200403.zip
1.66 GB
-
CRA03_200403_200415.zip
1.27 GB
-
CRA03_200415_200430.zip
1.61 GB
-
CRA03_200501_200531.zip
3.25 GB
-
CRA03_200601_200624.zip
2.51 GB
-
CRA04_171117_171129.zip
743.96 MB
-
CRA04_171129_171208.zip
576.47 MB
-
CRA04_171208_171220.zip
758.99 MB
-
CRA04_171220_180112.zip
1.41 GB
-
CRA04_180112_180129.zip
1.06 GB
-
CRA04_180129_180214.zip
999.47 MB
-
CRA04_180214_180228.zip
898.55 MB
-
CRA04_180228_180314.zip
919.31 MB
-
CRA04_180314_180328.zip
911.51 MB
-
CRA04_180328_180423.zip
1.72 GB
-
CRA04_180423_180521.zip
1.88 GB
-
CRA04_180521_180627.zip
2.55 GB
-
CRA04_181121_181205.zip
892.64 MB
-
CRA04_181205_181226.zip
1.32 GB
-
CRA04_181226_190116.zip
1.31 GB
-
CRA04_190116_190204.zip
1.22 GB
-
CRA04_190204_190225.zip
1.31 GB
-
CRA04_190225_190318.zip
1.37 GB
-
CRA04_190318_190408.zip
1.41 GB
-
CRA04_190408_190426.zip
1.22 GB
-
CRA04_190426_190520.zip
1.62 GB
-
CRA04_190520_190612.zip
1.61 GB
-
CRA04_190612_190703.zip
1.48 GB
-
CRA04_191120_191127.zip
674.34 MB
-
CRA04_191127_191211.zip
1.35 GB
-
CRA04_191211_191225.zip
1.38 GB
-
CRA04_191225_200108.zip
1.35 GB
-
CRA04_200108_200122.zip
1.39 GB
-
CRA04_200122_200205.zip
1.36 GB
-
CRA04_200205_200219.zip
1.41 GB
-
CRA04_200219_200306.zip
1.58 GB
-
CRA04_200306_200318.zip
1.21 GB
-
CRA04_200318_200403.zip
1.61 GB
-
CRA04_200403_200415.zip
1.24 GB
-
CRA04_200415_200430.zip
1.56 GB
-
CRA04_200501_200531.zip
3.17 GB
-
CRA04_200601_200624.zip
2.44 GB
-
CRA05_171117_171129.zip
770.07 MB
-
CRA05_171129_171208.zip
593.96 MB
-
CRA05_171208_171220.zip
776.11 MB
-
CRA05_171220_180112.zip
1.45 GB
-
CRA05_180112_180129.zip
1.09 GB
-
CRA05_180129_180214.zip
1.01 GB
-
CRA05_180214_180228.zip
918.79 MB
-
CRA05_180228_180314.zip
940.23 MB
-
CRA05_180314_180328.zip
930.72 MB
-
CRA05_180328_180423.zip
1.73 GB
-
CRA05_180423_180521.zip
1.89 GB
-
CRA05_180521_180627.zip
2.46 GB
-
CRA05_181121_181205.zip
911.23 MB
-
CRA05_181205_181226.zip
1.35 GB
-
CRA05_181226_190116.zip
1.33 GB
-
CRA05_190116_190204.zip
1.24 GB
-
CRA05_190204_190225.zip
1.33 GB
-
CRA05_190225_190318.zip
1.39 GB
-
CRA05_190318_190408.zip
1.43 GB
-
CRA05_190408_190426.zip
1.23 GB
-
CRA05_190426_190520.zip
1.66 GB
-
CRA05_190520_190612.zip
1.62 GB
-
CRA05_190612_190703.zip
1.49 GB
-
CRA05_191120_191127.zip
692.55 MB
-
CRA05_191129_191211.zip
1.19 GB
-
CRA05_191211_191225.zip
1.41 GB
-
CRA05_191225_200108.zip
1.39 GB
-
CRA05_200108_200122.zip
1.43 GB
-
CRA05_200122_200205.zip
1.40 GB
-
CRA05_200205_200219.zip
1.43 GB
-
CRA05_200219_200306.zip
1.62 GB
-
CRA05_200306_200318.zip
1.24 GB
-
CRA05_200318_200403.zip
1.64 GB
-
CRA05_200403_200415.zip
1.26 GB
-
CRA05_200415_200430.zip
1.59 GB
-
CRA05_200501_200531.zip
3.23 GB
-
CRA05_200601_200624.zip
2.48 GB
-
LabellingData_202101_training_Swiss_soil.zip
54.87 MB
-
LabellingData_202102_evaluation_Swiss_soil.zip
39.29 MB
-
LabellingData_202103_training_Swiss_soil.zip
76.67 MB
-
LabellingData_202106_evaluation_Swiss_Japanese_sand.zip
52.35 MB
-
LabellingData_202110_evaluation_Japanese_sand.zip
57.87 MB
-
LabellingData_202110_evaluation_Swiss_soil_sand.zip
42.50 MB
-
README.md
1.83 KB
Abstract
Long-term field monitoring of leaf pigment content is informative for understanding plant responses to environments distinct from regulated chambers but is impractical by conventional destructive measurements. We developed PlantServation, a method incorporating robust image-acquisition hardware and deep learning-based software that extracts leaf color by detecting plant individuals automatically. As a case study, we applied PlantServation to examine environmental and genotypic effects on the pigment anthocyanin content estimated from leaf color. We analyzed >4 million images of small individuals of four Arabidopsis species in the field, where the plant shape, color, and background vary over months. Past radiation, coldness, and precipitation significantly affected the anthocyanin content. The synthetic allopolyploid A. kamchatica recapitulated the fluctuations of natural polyploids by integrating diploid responses. The data support a long-standing hypothesis stating that allopolyploids can inherit and combine the traits of progenitors. PlantServation facilitates the study of plant responses to complex environments termed “in natura”.
Methods
Top-view images of Arabidopsis were collected multiple times per day using commercial RGB cameras in a common garden in Japan for three seasons.
Labelling data were generated by manually marking the areas of target plants in images.
Scripts were produced for analyzing the images and color and size information of the target plants extracted from the images.
Usage notes
Labelling data (.json files) can be opened using labelme in python.
R scripts (.r files) can be opened in R or as a text file.
Python scripts (in script_7_for_Dataset_8_Fig_S29) can be opened in Python or as a text file.