Skip to main content

Data from: Depth-to-water mediates bryophyte response to harvesting in boreal forests

Cite this dataset

Bartels, Samuel F.; James, Ryan S.; Caners, Richard T.; Macdonald, S. Ellen (2019). Data from: Depth-to-water mediates bryophyte response to harvesting in boreal forests [Dataset]. Dryad.


1. Site moisture is an important component of the forest landscape for maintaining biodiversity, including forest-floor bryophytes, but little is known about its role in shaping understory responses to harvesting. 2. We investigated the influence of site wetness, determined using a remotely-sensed, topographic depth-to-water (DTW) index, on responses of bryophyte cover, richness, diversity, and composition to variable retention harvesting (comparing: 2% [clear-cut], 20%, and 50% dispersed green tree retention and uncut controls [100% retention]) in three boreal forest cover-types (broadleaf, mixed, and conifer forests) in western Canada. The DTW index provides an approximation of depth to water at or below the soil surface, and was derived from wet-areas mapping based on discrete Airborne Laser Scanning data acquired over an experimentally harvested landscape located in northwestern Alberta, Canada. 3. The effectiveness of leaving retention (versus clear-cutting) for conserving bryophyte communities depended on site wetness, as indicated by DTW, with the specifics varying among forest types. In broadleaf forests, bryophyte cover and richness were generally low and not much affected by harvesting but drier sites had higher richness and a few more unique species. In mixed and conifer forests, leaving retention (versus clear-cutting) on wetter (versus drier) sites was more effective for conserving bryophyte cover, wetter sites had higher total species richness, and more species were exclusive to wetter sites. 4. Synthesis and applications. Site wetness, as indicated using the remotely-sensed topographic site wetness index "depth-to-water," mediates bryophyte responses to variable-retention harvests. Specifically, our results suggested that in conifer and mixed forests it would be more beneficial to target wetter sites for retention patches or dispersed retention whereas in broadleaf sites there might be a slight advantage to targeting drier sites. Our study demonstrates that this tool could be used to inform management decisions around leaving dispersed or patch retention.28-Jan-2019

Usage notes


northern Alberta