Skip to main content
Dryad logo

Data from: Population genetics and adaptation along elevation gradients in invasive Solidago canadensis

Citation

Moran, Emily V.; Reid, Andrea; Levine, Jonathan M. (2018), Data from: Population genetics and adaptation along elevation gradients in invasive Solidago canadensis, Dryad, Dataset, https://doi.org/10.5061/dryad.h9r01

Abstract

Gene flow between populations may either support local adaptation by supplying genetic variation on which selection may act, or counteract it if maladapted alleles arrive faster than can be purged by selection. Although both such effects have been documented within plant species' native ranges, how the balance of these forces influences local adaptation in invasive plant populations is less clear, in part because introduced species often have lower genetic variation initially but also tend to have good dispersal abilities. To evaluate the extent of gene flow and adaptation to local climate in invasive populations of Solidago canadensis, and the implications of this for range expansion, we compared population differentiation at microsatellite and chloroplast loci for populations across Switzerland and assessed the effect of environmental transfer distance using common gardens. We found that while patterns of differentiation at neutral genetic markers suggested that populations are connected through extensive pollen and seed movement, common-garden plants nonetheless exhibited modest adaptation to local climate conditions. Growth rate and flower production declined with climatic distance from a plant's home site, with clones from colder home sites performing better at or above the range limit. Such adaptation in invasive species is likely to promote further spread, particularly under climate change, as the genotypes positioned near the range edge may be best able to take advantage of lengthening growing seasons to expand the range.

Usage Notes

Location

Switzerland