POI-based land use map for Africa
Data files
Mar 20, 2023 version files 173.01 MB
-
algeria.parquet
14.93 MB
-
angola.parquet
6.69 MB
-
benin.parquet
695.56 KB
-
botswana.parquet
3.30 MB
-
burkina_faso.parquet
1.57 MB
-
burundi.parquet
173.89 KB
-
cameroon.parquet
2.56 MB
-
cape_verde.parquet
338.58 KB
-
central_african_republic.parquet
2.97 MB
-
chad.parquet
6.83 MB
-
comores.parquet
137.31 KB
-
congo_brazzaville.parquet
1.73 MB
-
congo_democratic_republic.parquet
11.90 MB
-
djibouti.parquet
172.24 KB
-
egypt.parquet
6.52 MB
-
equatorial_guinea.parquet
213.50 KB
-
eritrea.parquet
837.03 KB
-
ethiopia.parquet
5.90 MB
-
gabon.parquet
1.42 MB
-
ghana.parquet
1.41 MB
-
ivory-coast.parquet
1.80 MB
-
kenya.parquet
3.18 MB
-
lesotho.parquet
270.51 KB
-
liberia.parquet
630.46 KB
-
libya.parquet
10.51 MB
-
madagascar.parquet
4.37 MB
-
malawi.parquet
784.78 KB
-
mali.parquet
6.73 MB
-
mauritania.parquet
5.65 MB
-
mauritius.parquet
118.65 KB
-
morocco.parquet
4.49 MB
-
mozambique.parquet
4.88 MB
-
namibia.parquet
4.93 MB
-
niger.parquet
6.08 MB
-
nigeria.parquet
5.18 MB
-
README.md
1.34 KB
-
rwanda.parquet
177.26 KB
-
saint_helena_ascension_and_tristan_da_cunha.parquet
11.83 KB
-
sao_tome_and_principe.parquet
92.34 KB
-
senegal_and_gambia.parquet
1.24 MB
-
seychelles.parquet
280.80 KB
-
sierra_leone.parquet
557.04 KB
-
somalia.parquet
3.59 MB
-
south_africa.parquet
9 MB
-
south_sudan.parquet
3.28 MB
-
sudan.parquet
9.87 MB
-
swaziland.parquet
160.38 KB
-
tanzania.parquet
5.04 MB
-
togo.parquet
377.70 KB
-
tunisia.parquet
1.53 MB
-
uganda.parquet
1.46 MB
-
zambia.parquet
4.10 MB
-
zimbabwe.parquet
2.34 MB
Abstract
The combination of spatial distribution, semantic characteristics, and sometimes temporal dynamics of POIs inside a geographic region can capture its unique land use characteristics. We developed a scalable POI-based land use modeling framework. By combining POIs with a neural network language model, we developed a spatially explicit approach to learn the embedding representation of POIs and AOIs. We trained supervised classifiers using AOI embeddings as input features to predict AOI land use at different semantic granularities.