Skip to main content
Dryad logo

Data from: Factors affecting GEBV accuracy with single-step Bayesian models

Citation

Zhou, Lei et al. (2017), Data from: Factors affecting GEBV accuracy with single-step Bayesian models, Dryad, Dataset, https://doi.org/10.5061/dryad.hk14j

Abstract

A single-step approach to obtain genomic prediction was firstly proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in term of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50 and 500) were simulated. Three models were implemented to analyze the simulated data: single-step GBLUP (SSGBLUP), single-step BayesA (SS-BayesA) and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than that for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QT L. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.

Usage Notes