Skip to main content
Dryad

Insecticidal activity of Beauveri bassiana ERL1170-egfp against Tribolium castaneum

Abstract

Background

Beauveria bassiana is one of the commercially available entomopathogenic fungi (EPF), and a number of isolates with high virulence and broad host spectrum have been used to control agricultural and forest pests. Although the functional importance of genes in EPFs’ pathogenesis have been extensively studied, the precise ultrastructural mechanism of the fungal infection, particularly penetration of the host insect cuticles, is not well understood.

Results

In this study, we investigated the morphology and ultrastructure of the larval cuticle of the red flour beetle, Tribolium castaneum, after treatment with B. bassiana ERL1170 expressing an enhanced green fluorescent protein (Bb-eGFP). The Bb-eGFP showed high virulence against the larvae, with approximately 90% mortality at 48 h after treatment (HAT) and 100% at 72 HAT under our infection conditions. In these larvae, the regions of the body wall with flexible cuticles, such as the ventral and ventrolateral thorax and abdomen, became darkly melanized, but there was little to none melanization in the rigid dorsal cuticular structures. Confocal microscopy and transmission electron microscopy (TEM) indicated that germinated conidia on the surface of the larval cuticle were evident at 6 HAT, which formed penetration pegs and began to penetrate the several cuticle layers/laminae by 12 HAT. The penetration pegs then developed invading hyphae, some of which passed through the cuticle and reached the epidermal cells by 24 HAT. The larval cuticle was aggressively and extensively disrupted by 48 HAT, and a number of outgrowing hyphae were observed at 72 HAT.