Skip to main content
Dryad logo

Data from: Multi-objective optimization for plant germplasm collection conservation of genetic resources based on molecular variability

Citation

Schlottfeldt, Shana et al. (2016), Data from: Multi-objective optimization for plant germplasm collection conservation of genetic resources based on molecular variability, Dryad, Dataset, https://doi.org/10.5061/dryad.hq8pd

Abstract

Germplasm collections play a significant role among strategies for conservation of diversity. It is common to select a core collection to represent the genetic diversity of a germplasm collection, in order to minimize the cost of conservation, while ensuring the maximization of genetic variation. We aimed to solve two main problems: (1) to select a set of individuals, from an in situ data set, that is genetically complementary to an existing germplasm collection, and (2) to define a core collection for a germplasm collection. We proposed a new multi-objective optimization (MOO) approach based on principles of systematic conservation planning (SCP) incorporating heterozygosity information; therefore, optimization takes genotypic diversity and variability patterns into account as well. As a case study, we used Dipteryx alata microsatellite loci information from two sources, an ex situ germplasm collection located at the Agronomy School of the Federal University of Goiás (UFG-AS), and an in situ data set composed of 642 sampled individual trees. We were able to identify within a population of several individuals, the exact accessions/samples that should be chosen in order to preserve the species diversity. We found that material from nine in situ individual trees are enough to complement the UFG-AS germplasm collection as it is, and that it is possible to define a core collection of 20 individual trees representing all studied genetic diversity. Moreover, we defined a method (a protocol) to deal with large amounts of accessions in the context of MOO. The proposed approach can be used to help constructing collections with maximal allelic richness and can also be extended to the in situ conservation. As far as we know, this is the first time that principles of SCP and the MOO approach are applied to the problem of complementing a germplasm collection and of finding a core collection for a germplasm collection.

Usage Notes

Location

Central Brazil
Cerrado