Skip to main content
Dryad logo

Data from: Genomic regions underlying metabolic and neuronal signaling pathways are temporally consistent outliers in a moving avian hybrid zone

Citation

Wagner, Dominique et al. (2020), Data from: Genomic regions underlying metabolic and neuronal signaling pathways are temporally consistent outliers in a moving avian hybrid zone, Dryad, Dataset, https://doi.org/10.5061/dryad.j3tx95x8c

Abstract

The study of hybrid zones can provide insight into the genetic basis of species differences that are relevant for the maintenance of reproductive isolation. Hybrid zones can also provide insight into climate change, species distributions, and evolution. The hybrid zone between black-capped chickadees (Poecile atricapillus) and Carolina chickadees (P. carolinensis) is shifting northward in response to increasing winter temperatures but is not increasing in width. This pattern indicates strong selection against chickadees with admixed genomes. Using high-resolution genomic data, we identified regions of the genomes that are outliers in both time points and do not introgress between the species; these regions may be involved in the maintenance of reproductive isolation. Genes involved in metabolic regulation processes were overrepresented in this dataset. Several gene ontology categories were also temporally consistent—including glutamate signaling, synaptic transmission, and catabolic processes—but the nucleotide variants leading to this pattern were not. Our results support recent findings that hybrids between black-capped and Carolina chickadees have higher basal metabolic rates than either parental species and suffer spatial memory and problem-solving deficits. Metabolic breakdown, as well as spatial memory and problem-solving, in hybrid chickadees may act as strong postzygotic isolation mechanisms in this moving hybrid zone.