Skip to main content
Dryad logo

Data from: Survey design for precise fire management conservation targets

Citation

Sitters, Holly et al. (2017), Data from: Survey design for precise fire management conservation targets, Dryad, Dataset, https://doi.org/10.5061/dryad.jd523

Abstract

Common goals of ecological fire management are to sustain biodiversity and minimize extinction risk. A novel approach to achieving these goals determines the relative proportions of vegetation growth stages (equivalent to successional stages, which are categorical representations of time since fire) that maximize a biodiversity index. The method combines data describing species abundances in each growth stage with numerical optimization to define an optimal growth-stage structure which provides a conservation-based operational target for managers. However, conservation targets derived from growth-stage optimization are likely to depend critically on choices regarding input data. There is growing interest in use of growth-stage optimization as a basis for fire management, thus understanding of how input data influence the outputs is crucial. Simulated datasets provide a flexible platform for systematically varying aspects of survey design and species inclusions. We used artificial data with known properties, and a case-study dataset from southeastern Australia, to examine the influence of (i) survey design (total number of sites, and their distribution among growth stages) and (ii) species inclusions (total number of species and their level of specialization) on the precision of conservation targets. Based on our findings, we recommend that survey designs for precise estimates would ideally involve at least 80 sites, and include at least 80 species. Greater numbers of sites and species will yield increasingly reliable results, but fewer might be sufficient in some circumstances. An even distribution of sites among growth stages was less important than the total number of sites, and omission of species is unlikely to have a major influence on results as long as several species specialize on each growth stage. We highlight the importance of examining the responses of individual species to growth stage before feeding survey data into the growth-stage optimization black box, and advocate use of a resampling procedure to determine the precision of results. Collectively, our findings form a reproducible guide to designing ecological surveys that yield precise conservation targets through growth-stage optimization, and ultimately help sustain biodiversity in fire-prone systems.

Usage Notes