Skip to main content
Dryad

Data from: Structural and catalytic properties of copper silicate nanomaterials

Cite this dataset

Narasimharao, Katabathini; Bawaked, Salem (2020). Data from: Structural and catalytic properties of copper silicate nanomaterials [Dataset]. Dryad. https://doi.org/10.5061/dryad.jh9w0vt70

Abstract

Nanosized copper silicates with three different structural morphology (amorphous, nanotubes and MEL) were prepared using different synthesis methods. The physico-chemical properties of copper silicates were characterized by XRD, FT-IR, SEM, HRTEM, N2-physisorption, XPS and H2-TPR techniques. The results indicated that the preparation conditions affect reduction behavior and textural properties of nanosized copper silicates. Hydrothermal synthesis method yielded chrysocolla-like CuSiO3 nanotubes, which possessed high surface area and pore volume with easy reducibility. The catalytic performances of synthesized copper silicate nanostructures were evaluated for dehydrogenation of methanol. It was found that dehydrogenation activity is depended on the structural properties of copper silicates. Highest activity was observed for copper silicates with nanotube morphology. Catalytic dehydrogenation activity of copper silicates was also related to presence of more number of Cu-O-Si species, easy reducibility and Lewis acid centers. The CuSiO3 nanotubes sample also exhibited good stability under investigated reaction conditions that deactivation was not detected for 48 h.